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We present a new formulation of Feynrnan's path integral, based on Voronin's theorems on the univer-
sality of the Riernann zeta function. The result is a discrete sum over "paths, " each given by a zeta
function. A new measure which leads to the correct quantum mechanics is explicitly given.

PACS numbers: 03.65.Db, 11.10.—z

Even though the "path integral" plays a fundamental
role in quantum theories, our ability to compute with it or
to use it formally for establishing general results is rather
limited. For actual computations on the lattice one is
essentially restricted to the Monte Carlo method which
has its own limitations. Formally, one uses the functional
formalism as a generator of perturbation theory, and the
existence of the continuum limit is often hard to estab-
lish. Guided by Wheeler s intuitive idea of quantum
theory as an "average over histories" we propose a new
formulation of the path integral based on a countable set
of "paths" which are in some sense "quantum-mechan-
ically complete. " Such a formulation will have several
advantages. The most important is the possible replace-
ment of multidimensional (or even infinite-dimensional
functional integrals) with weighted one-dimensional in-

tegrals, and eventually we hope to avoid the need for in-
troducing a lattice. In addition, the fact that each "path"
will be defined by an analytic function with well-known
properties and integral representations will make formal
manipulations possible where they have not been with the
standard formulation. From the computational point of
view one can get an alternative to the Monte Carlo
method.

In a recent paper [1] we introduced a new definition of
the Feynman path integral and expressed it as a discrete
sum over "paths. " Each path is given by a vector whose
components are zeta functions evaluated at points in the
critical region. We also showed how a new measure (or
Jacobian) can be determined to give the correct quantum
mechanics. We checked our results by carrying out ex-
tensive numerical calculations on the Connection
Machine to test our new method. The agreement was ex-
tremely encouraging.

In this Letter we give a brief summary of our results,
which have been improved by defining the paths in terms
of In~/~, a modification which allows us to give an explicit
expression for the measure. As in Ref. [1], we discuss
only Euclidean quantum mechanics, and the generaliza-
tion to quantum fields will be given elsewhere.

Euclidean quantum mechanics, with Euclidean time x,
0~x ~L, is described by a field (1)(x). To define the
path integral one introduces a lattice on the interval
0~ x ~L, with lattice spacing a, xj =ja, j=1, . . . , v,

and v= L/a. —The partition function 0 is given by

n(v) =
r

( ) S(4(x~), . . . , Q(x ))
1x e

j=l

and

v V+!m'a g (t)'(xi)+a g V(y(x, )).
j=1 j=1

(2)

u(n) =—[ln(g(s) +ink) (i, . . . , in~/(s, +ink) )], (3)

where A )0, arbitrary, and fixed, and g is the standard
Riemann zeta function. Voronin's theorem asserts that
the set u(n), n E Z, is dense in R'. We also have an im-
portant result about the density of the vectors u(n) in R"
when n =1,2, . . . , N and N is large. Let X(n;N) be the
set of integers defined by

X(n;N) = ' l 6 [1, . . . , N] ~u(n) —u(l )
~

& e . (4)

The remarkable fact is that as N ~, X (n;N ) is not
only nonempty but has a positive density p, (n) defined as

W

p, (n) = lim —g g~(„tv)(l), .
W I=l

(5)

where g~ is the characteristic function of L.
To apply Voronin's theorem to a particular field

configuration, i.e., path, p(x) ), . . . , p(x, ), we first intro-
duce a linear mapping between the lattice points,
x l, . . . , x„ in space-time and the points s l, . . . , s, in the
critical region. We choose all the sj's to lie on a vertical

The integral in Eq. (1) is an integral over R'. However,
given the positivity of S, and the fact that V(p) must be
bounded from below, one can well approximate the in-
tegral by integrating over a finite volume V 6 R'.

Our main idea is to use the following version of
Voronin's [2] theorem. We start with a fixed set of v

complex numbers, sl, s2, . . . , s„where sj&sp if j&k, and
& Resj & 1, for j =1, . . . , v. Then we define the set of

vectors u(n), u(n) E R', and n =1,2, . . . , as
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p" (x,):ln—lg(a+ijh+inh)I, j=1, . . . , v. (7)

Here to separate our paths we take 6» h, and h, & hv.
As n ranges from n =1 to n =N ~, it is clear that

for any field configuration % E R', @= [P(x ), . . . ,
p(x, )j, we can find a large set of positive integers, X(@),
such that

Ip(x ) lnl&(a+tj'h+t'la)l I & e j =I

for all I 6 X(@).
It now follows from the standard definition of the in-

tegral (1) that one can write
—S(n; v)

n(v)= g ' +O(W ").
„=w, p, (n)

Here,

[y (j;n) —
y (j+1;n)]'5 n;v

j=l 2Q

+ l m'ay'(j;n)+aV(y (j;n)) (io)

and

y (j;n ) = in
I g(a+ij h

+in�&)

I .

We must take N large, and N»NO. By summing over n

we sum over all paths, but the density p„(n) insures that
we have the correct Jacobian for quantum mechanics.
For an estimate of the error in (9) one should check Ref.
[1] for more details.

The main question in this paper is to find the expres-
sion for p, (n), the density of the vectors u(l) in the
neighborhood of a given u(n).

We first discuss the case v=1. Here p~(n) can be
computed once we know the asymptotic probability for
having Ig(a+it)l, for a randomly chosen t»1, be such
that r~ ( Ig(a+it)l (rq. We call this probability densi-

ty P (r), and write

Prob(r~ & Ig(a+it)l &r2)
f%P2

P.(r)dr, —,
' & a & 1. (12)J ri

In the notation of Ref. [1],P (r) =P(r)r. The momen—ts
of P (r ) are known for 0 ~ Rek ~ 2,

Q oo T
P (r)r "dr = lim —

I g(a+it ) I
dt —=F1,(2a)&0 T4 ~

(i3)

line, i.e., Resj =a, 2 & a. & 1, j =1, . . . , v, and keep o.

fixed. The advantages of this last choice will become ap-
parent later. Our mapping is

x, (a+ijh), j= 1, . . . , v,

where h & 1 and fixed. We define our nth path by the
configuration

and

F (2 )=+ F kk 1;
1

P
(i4)

where we can take any real c such that 1 &c & 5. As
shown in Ref. [1], the integral in (15) is absolutely con-
vergent. From Eq. (15) it is now easy to obtain the dis-
tribution function of the values of Inlgl, which we call
W.(y),

y'2

Prob(y~ & lnl((a+it)l & yq) —= W (y)dy

for a randomly chosen t»1. It is clear that W (y)
=P (e') e r, and hence

~+oo
W (y) =e ' ' '„dXe ' 'Fitz+~, ~lt2(2a)(2tr)

with 1 & c & 5. The probability density W (y) is an
asymptotic distribution in the sense that if we take an in-
terval To& t & T, T»Tp, and compute a large ensemble
of Inlg(a+it~)l values, then the resulting histogram for
the distribution of values for this ensemble will approach
W (y) as T~ ee, and To is kept fixed. However, it is
fortunate that even for an interval To =O(10 ) and
T=0(10 ) the computed histogram and the exact result
for W' (y) are quite close to each other. This fact is
shown in Fig. 1. The region To& t & 10 is easily acces-
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FIG. 1. Distribution of the values of y=lnigi at a=0.75.
The crosses denote points computed from the exact formula
(16), and the line is the histogram from computing a large sam-
ple.

where zF(a, b;c;z) is the standard hypergeometric func-
tion, and +~ is a product over all primes. These results
are in Ref. [3] (see Theorem 7.11 and also Sec. 7.19).
We can obtain an explicit expression for P (r) by taking
the inverse Mellin transform and get

+ + oo

P (r) = dX(r) '"F;itz+t, ~lt2(2a), (15)
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sible to compute.
The moments of W (y) can be given exactly. It follows from Eqs. (13) and (16) that

1
l T +"

([In~/(o+it) ~]') = lim — [In~/(a+it) ~]'dr= W (y) y'dy= — FI, (2cr)T-- T~ l 2 dk
lc =0

(g &1,

with l a positive integer. For I =1 the result is zero. The
result for !=2 can also be explicitly calculated and one each component. This leads to a factorization of p, (n)
gets and we get

([Inlg(a+ir) I] ) = ' XL(p

where L(z) is the Spence function, L(z) =foln(1 —x)
x dx/x.

For v=1, the density p~(n) is simply given by p~(n)
=W (y(l;n)), with y(1;n) defined in Eq. (11). For
v&1, we need the probability for obtaining a vector
u(n) E R'. With /i fixed and h & 1, the values of y (j;n)
and y (j +I;n) are uncorrelated. This was explicitly test-
ed in Ref. [1]. Thus the probability density for a specific
u(n) is the product of the independent probabilities for

V

p, (n) =+ W (y (j;n))j=l
(Is)

n(v) = g e ~'""
U W (y (j n))

n=l j=l

d

+o(w-'~ )

(i9)

with y(j;n) defined in Eq. (11).
We now have the following explicit formulas for both

the partition function and the Green's function in Eu-
clidean quantum mechanics:

JV V

G(j, l) =[0(v)] ' g y (j;n)y (l;n)e "" g W (y (j;n))n=l j=l +o(w -"). (20)

In Eqs. (19) and (20), W (y) is explicitly given by Eq.
(16), y (j;n) is defined in Eq. (11), and the action
g(n;v) is given in Eq. (10).

In Ref. [1] extensive numerical calculations were car-
ried out to check the validity of Eqs. (19) and (20). We
applied the method to both the harmonic and anharmonic
oscillators, and compared our results with older methods
and with exact results. This was even done for the propa-
gator of a free theory where the lattice result is also ex-
actly known. In addition, we were able to calculate the
ground-state energy of the harmonic oscillator with good
accuracy. This involves calculating lnQ, and computing
the partition function is much more difficult than comput-
ing averages of observables in any method. A very en-
couraging feature of our calculations is the fact that we
obtain good results with N, the number of paths, being
such that N«e'. This is a strong indication that there
exists a manageable subset of paths that dominate the
physics. But the greatest potential interest in our method
is the possibility of a direct continuum formation which
we discuss in more detail in (c) below.

We close this paper with a few remarks.
(a) The formula (19) can be generalized to scalar

quantum field theories in higher dimensions, d =2, 3,4.
(b) As mentioned in the introduction, our motivation

for exploring this new method has both formal and com-
putational aspects. The formal consequences of our re-
sults are being pursued, and we hope to report on them in
the future. For the computational uses of our formula
one needs an algorithm to select a subset of integers n

which dominate the sum over paths. This will lead to an
alternative to the Monte Carlo method which will allow

us to do what was dificult before. For example, one
could do p field theory with complex coupling.

(c) The continuous form of Voronin's theorem, i.e.,
Theorem 1 of Ref. [1], leads us to contemplate a far
reaching conjecture. Namely, this concerns taking the
limit a 0, where a is the lattice spacing. If in this limit
a measure, p (n), exists, then essentially any quantum-
mechanical problem can be reduced to quadratures.

For 0 ~ x ~ L, we then can use as a "quantum-
mechanically complete" set of fields, p

" (x), the follow-
ing:

y'"i—:y (x;n) = In~ g(rr+ixA/L+—in') ~, (2i)

where any fixed 5 & 0 will do, and —,
' ( a ( l.

The Green's function for any action can now be written
as a series:

JV

G(x,y) = lim g y (x;n)y (y;n)a„
n=W 0 n =No

+ —,
' m'

y( nx) V+(y (x;n)) . (23)

Given p (n) all the positive coefficients a„are known ex-
plicitly,

a„=—[p (n)] 'e
and

2
By (x;n)

S(n) —= dx-4o 2 Bx
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The important thing to remember is that p (n) de-
pends only on the properties of the Riemann zeta func-
tion and has no physics in it. All the physics enters
through S(n). Clearly, the existence of p (n) and an ex-
plicit formula for it would be a remarkable achievement.
It will make the introduction of a lattice unnecessary.

(d) From Fig. 1 one can see that both the exact W (y)
and the histogram computed for it look roughly like shift-
ed Gaussians. The maximum is not at y=0. Selberg [4]
has shown that distribution of values for ]n(( & +it)/
42tr]nlnt is actually a Gaussian. However, computation-
ally this does not become apparent except for much
higher values of t than we have used. For the physics ap-
plications we envisage, we prefer to work with values of
o. & 2, where, as seen in Fig. 1, the asymptotic distribu-
tion is reached even for 10 &t &10 . Also the factor
4[n lnt introduces additional complications. At this stage

we are satisfied with a W (y) which is given explicitly
and which can be easily computed.
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