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Novel solutions of the Yang-Baxter relation for a series of multistate vertex models are presented in
the braid-group limit. The obtained family of solutions gives a sequence of ““colored”-braid-group repre-
sentations. Possible generalizations of the multivariable Alexander polynomial are discussed.
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Recently, a close connection between the theory of in-
tegrable systems and the knot theory was found [1,2].
The key is the Yang-Baxter relation [3] which originally
was the applicability condition of the Bethe-ansatz tech-
nique for one-dimensional many-body problems.

In the celebrated work of Jones [1]1, an explicit braid-
group representation derived from the von Neumann
algebra theory was utilized to construct a new link poly-
nomial called the Jones polynomial. Based on the fact
that the Yang-Baxter relation reduces to the defining re-
lation of the braid group, a general construction pro-
cedure of link polynomials has been established, starting
from solvable statistical-mechanical models at criticality
whose Boltzmann weights satisfy the Yang-Baxter rela-
tion [4].

We now know that both the “classic” Alexander poly-
nomial [5] and the Jones polynomial are certain limits of
a two-variable link polynomial called the homfly polyno-
mial [6]. In this sense, the Alexander polynomial and the
Jones polynomial are close relatives of each other. There
is, however, a major difference between the two. The
Alexander polynomial admits “multivariable’ generaliza-
tion such that each closed string constituting a link car-
ries its own variable. Such a multivariable generalization
is not known for the Jones polynomial. From the
statistical-mechanical point of view, this type of mul-
tivariable link polynomial can be constructed from a mul-
tivariable solution of the Yang-Baxter relation. In fact,
the recent state model construction of the multivariable
Alexander polynomial made by Murakami [7] utilizes a

‘“colored”-braid-group representation which is closely re-
lated to Felderhof’s solution [8] of the Yang-Baxter rela-
tion for the free-fermion eight-vertex model [9].

The aim of the present Letter is clear: We construct a
series of solutions of the colored Yang-Baxter relation in
the braid limit. The solutions not only give a novel family
of solvable lattice models but also serve as a basis for con-
struction of a sequence of multivariable link invariants
generalizing the multivariable Alexander polynomial.

Let us briefly review the case of the single-variable link
polynomials [4], which is based on the closed-braid repre-
sentation of links. We use the vertex-model terminology.
By o4.i;(u) we denote the Boltzmann weight for the ver-
tex configuration (k/,ij) as shown in Fig. 1. We have the
following expression for the diagonal-to-diagonal transfer
matrix X;(u) (u is the spectral parameter; i=1,...,
n—1):
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FIG. 1. Boltzmann weight ox.i; (u).
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where E,, is a matrix such that (E,,);; =8§,;8,;, and the
integer n (= 2) corresponds to the horizontal lattice size
of the vertex model. The solvability condition for the ver-
tex model, called the Yang-Baxter relation, reads

X)X 1 (u+0) X W) =X 11 (WX (w+0) X1 (). (2)

Taking the limits u,v— oo on both sides along a suitable
direction in the complex u plane [4], Eq. (2) reduces to
the following relation defining the braid group [b;
=limX,~(u)]:

bibi+1b;=b;+ 1bibi+ . (3)

With the further relation b;b; =b;b; (for |i —j| =2), we
have the n-string braid group B, generated by {1,b),

. ba—1}. The explicit matrix form of b; is given by Eq.
(1) with {o,s 4 ()} replaced by its u— oo limit {by; ,,},
which we call the braid matrix. By regarding b; as the
basic braiding operation between the ith and (i +1)th
strings, we can identify braids as elements of the broad
group.

For construction of link polynomials, two theorems are
essential. One is Alexander’s theorem [10], which guar-
antees that any link can be represented as a closed braid.
The other is Markov’s theorem [11], which states that
two different braids representing a same link are
transformed into each other by successive application of
the Markov moves: AB— BA (A,B € B,) (type 1), and
A— Ab, (A € B,+,, b, €B,) (type II). Thus a link
polynomial is a functional acting on the set of representa-
tions {B,};=>, which has invariance with respect to the
Markov moves. Namely, a functional a(-) satisfying

a(AB)=a(BA) (4,BE€B,), @
4
a(A4b,)=a(4) (4€B,, b, € B,+1)
is a link polynomial.

We regard Eq. (3) as a system of algebraic equations
to determine the braid-matrix elements {b,; ,,}. In ordi-
nary noncolored cases, solutions contain only one non-
trivial parameter which is often denoted by ¢. The result-
ing link invariant is a function of . We now allow each
string constituting a braid to have color, and associate
different parameters to strings with different colors. Let
us call the parameters string variables. Then Eq. (3) is
generalized to the colored-braid relation (Fig. 2):

bi(y,z)bi+1(x,2)b;(x,y)
=b; +1(x,0)b;(x,2)b; +1(y,2z), (5)

where b;(x,y) represents the elementary braiding opera-
tion between a string with string variable x and that with
y. The noncolored version Eq. (3) corresponds to x =y
=z=¢t. In terms of the colored-braid matrix

z /y x z

= i
-~ /
x K y z X 6 Z
i i+l i+2 i i+l i+2

FIG. 2. Colored-braid relation.

{briij(x,p)}, Eq. (5) reads
Z bpq,ay(y ,Z)byr,[}k (x,z )baﬂ'ij (x,y)
aBy
= bor 5,90y, 2)bap jn ,2) . (6)
afy

We can regard Eq. (5) as a braid limit of the colored
Y ang-Baxter relation

Xiy,z;0) Xi+1(x,z;u +0) X G, p5u)
(@)

We should remark here that if we interpret the string
variables x, y, and z as spectral parameters (or rapidities
in the factorized S-matrix theory), we can regard the u-
independent relation (5) as the standard Yang-Baxter re-
lation. There is, however, a major difference between the
known “ordinary” solutions and those given in this Let-
ter. The ordinary solutions depend on the spectral pa-
rameters only in terms of their difference, which allows us
to put b;(x,y) =X;(x—y) and to write the Yang-Baxter
relation in the familiar “additive” form (2). In our solu-
tions, X;(x,y) is a full two-variable function of x and y,
and we cannot write the Yang-Baxter relation (5) in the
additive form. The nondifference property of the solution
is interesting, giving a novel family of integrable vertex
models. Moreover, the property is important from the
knot-theoretical point of view; because of this property,
we can have a consistent and nontrivial definition of
colored braids where the string variables naturally repre-
sent colors of strings.

We focus on solutions of the u-independent relation
(5). We assume the ‘*‘charge-conservation condition”
[12]: bxsij(x,y) =0 if i +j=k +1 Let us introduce the
following function (m=0,1,2,...):

=X;+100,y;0) X (x,z;u +0) X4y, z50) .

1
(1—zv¥) (m=1),
Fm(Z,U)= k=0

1 (n=0). ®)

For a general N-state model, the following form of
b ijGe,p) liyj k€ {—s,—s+1,.. . s}, s=(N—1)/2]
| solves (6):

bkl,ij(xay)__'{ _
0 otherwise ,
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where we have denoted k =s — k and
Fy(v,0)F,(zv,0) mm?

Fp—m@0,0)Fy(v,0)F,(zo,0) e
(10)

Opm(z,0) =

w=exp(2ni/N) .
The inverse braid matrix is given by
(67" (x,y,0) i =6 /x,1/y,1/0) i ji . a1

We have checked the colored-braid relation up to N =9
by direct calculation. We believe that (9) satisfies (6) for
general /V, although the proof is not yet completed. We
can find that for 3<N =<6 the expression (9) with
x =y =t reproduces the noncolored solution found by
Lee, Couture, and Schmeing [13]. For N =2, (9) gives a
colored-braid matrix corresponding to the multivariable
Alexander polynomial [7]. Using the braid matrices (9)
and (11), we have an n-color representation of the n-
string braid group. Note that after closing a braid to
form a link, the number of independent colors /N, may be
less than n. We denote the color of the ith string in the
closed brain by c(i) (€{1,2,...,NJ}). The resulting
closed-n-braid representation of a link contains N, string
variables {x.(),xc(), . .. ,Xcon}. We denote the (n,N.)
representation of the colored-braid group by B, ({x.)},
{c(O}N).

Let us discuss the link polynomials associated with the

obtained braid-group representations. We first construct

a functional called the Markov trace which we denote by
¢(-). As has been known for the noncolored case [4],
construction of ¢(-) is reduced to finding a diagonal ma-
trix & =diag(h,h,, . . . ,hy) with the Markov property

N
> bpg.pg(x,x)h, =& (independent of p) ,
=1
! (12)
N -—
2 bpgba(x,x)h; =& (independent of p) ,
q=I
where £=¢[b(x,x)], E=£&[b ~'(x,x)] are constants. In
the present case, A, is given by
hy=07, (13)
with
Elb(x,x)1=1, EIb " '(x,x)1=1/x""". (14)

For convenience, we introduce the renormalized genera-
tors {g;(x,y)} by

g G, y)=U/xN""YN=H) Vg (x,y) . (15)

Corresponding braid matrices satisfy both the colored-
braid relation and the Markov property with

Elg(x,x)1=¢lg 7' Gx,x)] =x ~N=-D72 (16)

The renormalized generators define another A(but an
equivalent) colored-braid-group representation B, ({x.)},

{c()},N.). We introduce the H matrix by
H=h"Veh?e .- @rn¥We - - @n™, (17)

where h ) is the h matrix acting at the ith position. The
unnormalized Markov trace ¢(-) is given by

¢(4) =Tr(HA) [4 € B,Ux. )}, fcM},NIT. (18)

Note that the functional ¢(-) is color independent, be-
cause the H matrix does not depend on the string vari-
ables {x.(»}. String variables appear only in the braid-
group representation.

It is easy to see that the following quantity a(-) has
the Markov-move invariances (4) (with b;’s replaced by
g’s), and hence is a link polynomial:

a(4) = 0(4) [4 € B,Ux i)}, fc()D},N)T.

- (
§ S
i=1

19)

We thus obtained a sequence (N=2,3.4,...) of mul-
tivariable link polynomials.

For the noncolored case (x.(;)=¢, for all i) with 2<N
=< 6, there has been an unproven conjecture [13] that the
Markov trace ¢(- ) with the & matrix (13) gives ¢(4) =0
[hence a(A) =0] for any braid 4. Since this property of
¢ originated from the tracelessness (X,h, =0) of the A
matrix, we suppose that the colored version (18) and (19)
should have the same property. The proposed regulariza-
tion scheme to overcome the diﬂ‘icult;/ has been to modify
the H matrix at its left edge: k") — diam(1,0,0,...)
(Ref. [131) or AV—1 (Ref. [14]). After the
modification, however, the property ¢(A4B)=¢(BA)
lequivalently, a(4B) =a(BA)] becomes nontrivial. Va-
lidity of the modified functional for N =2 was proved re-
cently [7], which gives support for the regularization
scheme for general V.

In Ref. [14] we have pointed out a connection between
the Alexander polynomial (N =2 case) and the Z,-
graded solution [15] of the Yang-Baxter relation. The
connection can be simply seen from the classical limit
x,y— 1 of the braid matrix (9). In this limit, the ele-
ment b; ;; becomes

bj,",'j(],l)r‘a);]. (20)

If we assign a grade p(i) to the index i as p(i) =s—i,
(20) gives a Zy analog of the graded permutation.
Hence, we may call the solution (9) the Zy-graded solu-
tion of the colored-braid relation (or colored Yang-
Baxter relation in the braid limit). Physically, bj; ;; cor-
responds to the phase factor (or S matrix) with respect to
the particle exchange (i,j)— (j,i). The form (20) indi-
cates that the particles involved in our problem have frac-
tional statistics. Recalling that the Z,-graded solution
corresponds to a free-fermion system, we can expect that
our Zy-graded solution describes statistical mechanics of
anyons.
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From the form of the solution (9), it is natural to ex-
amine the case where o is replaced by other roots of uni-
ty: o=expQkni/N) (k=2,3,...,N—1). A direct
check of the colored-braid relation for N < 8 shows that
not all values of k are admissible. The admissibility con-
dition is, however, simple: k and N are mutually prime.
This fact implies that (9) with @ =exp(2kxi/N) gives a
solution for (6) for each rational number k/N.

Our solution for the colored-braid relation presented in
this Letter is the most symmetric one. We can discuss
various transformation properties of the solution and
their relation to the “fusion” solutions [16]. Although we
have restricted ourselves to the braid relation (5), we can
consider the u-dependent relation (7). Our braid ma-
trices are also helpful in constructing the wu-dependent
solution. Details will be published elsewhere [17].

The authors thank M. Wadati for continuous en-
couragement.
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