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Novel solutions of the Yang-Baxter relation for a series of multistate vertex models are presented in

the braid-group limit. The obtained family of solutions gives a sequence of "colored"-braid-group repre-
sentations. Possible generalizations of the multivariable Alexander polynomial are discussed.

PACS numbers: 02.20.+b, 02.40.+m, 05.50.+q

Recently, a close connection between the theory of in-

tegrable systems and the knot theory was found [1,2].
The key is the Yang-Baxter relation [3] which originally
was the applicability condition of the Bethe-ansatz tech-
nique for one-dimensional many-body problems.

In the celebrated work of Jones [1], an explicit braid-
group representation derived from the von Neumann
algebra theory was utilized to construct a new link poly-
nomial called the Jones polynomial. Based on the fact
that the Yang-Baxter relation reduces to the defining re-
lation of the braid group, a general construction pro-
cedure of link polynomials has been established, starting
from solvable statistical-mechanical models at criticality
whose Boltzmann weights satisfy the Yang-Baxter rela-
tion [4].

We now know that both the "classic" Alexander poly-
nomial [5] and the Jones polynomial are certain limits of
a two-variable link polynomial called the homjSy polyno-
mial [6]. In this sense, the Alexander polynomial and the
Jones polynomial are close relatives of each other. There
is, however, a major difference between the two. The
Alexander polynomial admits "multivariable" generaliza-
tion such that each closed string constituting a link car-
ries its own variable. Such a multivariable generalization
is not known for the Jones polynomial. From the
statistical-mechanical point of view, this type of mul-
tivariable link polynomial can be constructed from a mul-
tivariable solution of the Yang-Baxter relation. In fact,
the recent state model construction of the multivariable
Alexander polynomial made by Murakami [7] utilizes a

"colored"-braid-group representation which is closely re-
lated to Felderhof's solution [8] of the Yang-Baxter rela-
tion for the free-fermion eight-vertex model [9].

The aim of the present Letter is clear: We construct a
series of solutions of the colored Yang-Baxter relation in

the braid limit. The solutions not only give a novel family
of solvable lattice models but also serve as a basis for con-
struction of a sequence of multivariable link invariants
generalizing the multivariable Alexander polynomial.

Let us briefly review the case of the single-variable link
polynomials [4], which is based on the closed-braid repre-
sentation of links. We use the vertex-model terminology.
By ot, t;l(u) we denote the Boltzmann weight for the ver-

tex configuration (kl, ij) as shown in Fig. 1. We have the
following expression for the diagonal-to-diagonal transfer
matrix X;(u) (u is the spectral parameter; i =1, . . . ,

n —I):

rs, pq

l

FIG. l. Boltzmann weight opt;, (u).
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where F,„ is a matrix such that (F„~);j=8„;B~j, and the
integer n (~ 2) corresponds to the horizontal lattice size
of the vertex model. The solvability condition for the ver-
tex model, called the Yang-Baxter relation, reads

X;(v)X;+ ) (u+ v)X;(u) =X;+ i (u)X, (u + v)X;+ i(v) . (2)

Taking the limits u, v ~ on both sides along a suitable
direction in the complex u plane [4], Eq. (2) reduces to
the following relation defining the braid group [b;
=limX;(u)]:

1+1 1+2 i+ 1 j+2

I IG. 2. Colored-braid relation.

bib(+ ] b( =b;+ ] b; bI + ] (3) [bt,t;j(x,y)}, Eq. (5) reads

With the further relation b; bj =bjb; (for ~i
—j ~

~ 2), we
have the n-string braid group B„generated by [I,b&,

. . . , b„—~}. The explicit matrix form of b; is given by Eq.
(1) with [cx„,~q(u)} replaced by its u ~ limit [b„, ~q},
which we call the braid matrix. By regarding b; as the
basic braiding operation between the ith and (i+1)th
strings, we can identify braids as elements of the broad
group.

For construction of link polynomials, two theorems are
essential. One is Alexander's theorem [10], which guar-
antees that any link can be represented as a closed braid.
The other is Markov's theorem [11], which states that
two diA'erent braids representing a same link are
transformed into each other by successive application of
the Markov moves: AB BA (A, B 6 8„) (type I), and
A Ab„(A E 8„+~, b„E 8„) (type II). Thus a link
polynomial is a functional acting on the set of representa-
tions [8„}„=q,which has invariance with respect to the
Markov moves. Namely, a functional a(. ) satisfying

a(AB) =a(BA) (A, B E 8„),
a(Wb„)=a(W) (a CB„,b„eB„„)

is a link polynomial.
We regard Eq. (3) as a system of algebraic equations

to determine the braid-matrix elements [b„~q} In ordi-.
nary noncolored cases, solutions contain only one non-
trivial parameter which is often denoted by t. The result-
ing link invariant is a function of t. We now allow each
string constituting a braid to have color, and associate
different parameters to strings with different colors. Let
us call the parameters string variables. Then Eq. (3) is
generalized to the colored-braid relation (Fig. 2):

b; (y, z)b;+((x,z)b;(x,y)

=b;+ i (x,y)b; (x,z) b;+ i (y, z), (5)
where b;(x,y) represents the elementary braiding opera-
tion between a string with string variable x and that with
y. The noncolored version Eq. (3) corresponds to x y
=z =t. In terms of the colored-braid matrix

g bpq ~y(y, z)by). pk (x,z )b~p ('j(x,y)
any

=g bq„„jj(x,y)bz~ „(x,z)b, tj jI, (y, z) .
aP ]'

(6)

=X;+
~ (x,y;u)X;(x, z;u + v)X;+ ~ (y, z;v) . (7)

%'e should remark here that if we interpret the string
variables x, y, and z as spectral parameters (or rapidities
in the factorized 5-matrix theory), we can regard the u-
independent relation (5) as the standard Yang-Baxter re-
lation. There is, however, a major diAerence between the
known "ordinary" solutions and those given in this Let-
ter. The ordinary solutions depend on the spectral pa-
rameters only in terms of their difference, which allo~s us
to put b; (x,y) =X;(x—y) and to write the Yang-Baxter
relation in the familiar "additive' form (2). In our solu-
tions, X;(x,y) is a full two variable fun-ction of x and y,
and we cannot write the Yang-Baxter relation (5) in the
additive form. The nondiAerence property of the solution
is interesting, giving a novel family of integrable vertex
models. Moreover, the property is important from the
knot-theoretical point of view; because of this property,
we can have a consistent and nontrivial definition of
colored braids where the string variables naturally repre-
sent colors of strings.

We focus on solutions of the u-independent relation
(5). We assume the "charge-conservation condition"
[121: btt;j(x, y) =0 if i+j Wk+l. Let us introduce the
following function (m =0, 1,2, . . .):

U (1 —zv') (m ~ 1),
F„,(z, v) = ' I =&

(m =0).

For a general %-state model, the following form of
b«, ;, (x,y) [i,j,k, l E [—s, —s+1, . . . , s};s =(N —1)/2]
solves (6):

We can regard Eq. (5) as a braid limit of the colored
Yang-Baxter relation

XI' (y,z; v )X;+ ) (x,z;u + v )XI' (x,y; u )

[Qr, -(xto'+j, I/to)Q; t(yto'+J, 1/to). 1'j for i+j =0+1 with j+i ~ i+@,
bkt, ij (»y) =

) 0 otherwise,
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where we have denoted k =s —k and

Fp (v, v )F& (zv, v )
Fz ~(v, v)F~(v, v)F~(zv, v)

a) =exp(2)ri/N) .

The inverse braid matrix is given by

(io)

[c(i)j,N, ). We introduce the H matrix by

(17)

where h ' is the h matrix acting at the ith position. The
unnormalized Markov trace p(. ) is given by

(((A) =Tr(HA) [A c B.([x,(;)j,[c(l)j,N, )]. (18)

g bzq zq(x, x)hq =g (independent of p),
q=l

g bf,q)q(x, x)hq =g (independent ofp),
q=l

(i2)

where (=g[b(x,x)), (=g[b '(x,x)] are constants. In
the present case, h~ is given by

(13)

[b '(x,y, co)]),(,) =[b(1/x, l/y, 1/N)ilk J; .

We have checked the colored-braid relation up to %=9
by direct calculation. We believe that (9) satisfies (6) for
general N, although the proof is not yet completed. %'e
can find that for 3 ~ N ~ 6 the expression (9) with
x y=t reproduces the noncolored solution found by
Lee, Couture, and Schmeing [13]. For N =2, (9) gives a
colored-braid matrix corresponding to the multivariable
Alexander polynomial [7]. Using the braid matrices (9)
and (11), we have an n-color representation of the n-
string braid group. Note that after closing a braid to
form a link, the number of independent colors N, may be
less than n. We denote the color of the ith string in the
closed brain by c(i) (C [1,2, . . . , N, j). The resulting
closed-n-braid representation of a link contains N, string
variables jx, (~),x„(2), . . . , x,(„)j. We denote the (n, N, )
representation of the colored-braid group by B,([x,(;)j,
[c(()j,N, ).

Let us discuss the link polynomials associated with the
obtained braid-group representations. We first construct
a functional called the Markov trace which we denote by
p( ). As has been known for the noncolored case [4],
construction of p( ) is reduced to finding a diagonal ma-
trix h =diag(h (, hq, . . . , hjv) with the Markov property

Note that the functional q)( ) is color independent, be-
cause the H matrix does not depend on the string vari-
ables [x,(;)j. String variables appear only in the braid-
group representation.

It is easy to see that the following quantity a( ) has
the Markov-move invariances (4) (with b s replaced by
g s), and hence is a link polynomial:

(&)= Q,((;) '" (t(&) [& &B ([,(;)j, f ()j,N, )).

(19)
We thus obtained a sequence (N=2, 3,4, . . . ) of mul-
tivariable link polynomials.

For the noncolored case (x,(;) =l, for all i) with 2 ~ N
~ 6, there has been an unproven conjecture [13] that the
Markov trace P( ) with the h matrix (13) gives P(A) =0
[hence a(A) =0] for any braid A. Since this property of
p originated from the tracelessness (g~h~ =0) of the h
matrix, we suppose that the colored version (18) and (19)
should have the same property. The proposed regulariza-
tion scheme to overcome the difficult~ has been to modify
the H matrix at its left edge: h ' diam(1, 0,0, . . . )
(Ref. [13)) or h ' I (Ref. [14]). After the
modification, however, the property p(AB) =(((BA)
[equivalently, a(AB) =a(BA)] becomes nontrivial. Va-
lidity of the modified functional for N =2 was proved re-
cently [7], which gives support for the regularization
scheme for general N.

In Ref. [14] we have pointed out a connection between
the Alexander polynomial (N =2 case) and the Z2-
graded solution [15] of the Yang-Baxter relation. The
connection can be simply seen from the classical limit
x,y 1 of the braid matrix (9). In this limit, the ele-
ment b~;,;j becomes

with bj;;~(1,1) =a)'J. (2o)

&[b(x,x)) =1, &[b '(x,x)) = I/x~ (i4)

g;(x,y) =(I/x~ 'y~ ') "4b;(x,y). (i5)

Corresponding braid matrices satisfy both the colored-
braid relation and the Markov property with

&[g(x,x)] =&[g '(x,x)] =x (i6)

The renormalized generators define another (but an
equivalent) colored-braid-group representation B„([x,(;)j,

For convenience, we introduce the renormalized genera-
tors [g;(x,y)j by

If we assign a grade p(i) to the index i as p(i) =s —i,
(20) gives a Z~ analog of the graded permutation.
Hence, we may call the solution (9) the Zz-graded solu-
tion of the colored-braid relation (or colored Yang-
Baxter relation in the braid limit). Physically, b,; ) cor-
responds to the phase factor (or S matrix) with respect to
the particle exchange (i,j) (j,i). The form (20) indi-
cates that the particles involved in our problem have frac-
tional statistics. Recalling that the Zq-graded solution
corresponds to a free-fermion system, we can expect that
our Z~-graded solution describes statistical mechanics of
anyons.
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From the form of the solution (9), it is natural to ex-
amine the case where co is replaced by other roots of uni-
ty: to =exp(2ktri/N) (k =2, 3, . . . , N —1). A direct
check of the colored-braid relation for N ~ 8 shows that
not all values of k are admissible. The admissibility con-
dition is, however, simple: k and N are mutually prime.
This fact implies that (9) with co =exp(2&tri/N) gives a
solution for (6) for each rational number k/N.

Our solution for the colored-braid relation presented in
this Letter is the most symmetric one. We can discuss
various transformation properties of the solution and
their relation to the "fusion" solutions [16]. Although we
have restricted ourselves to the braid relation (5), we can
consider the u-dependent relation (7). Our braid ma-
trices are also helpful in constructing the u-dependent
solution. Details will be published elsewhere [17].

The authors thank M. %adati for continuous en-
couragement.
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