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Thermodynamics of the Extended Hubbard Model in High Dimensions
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The extended Hubbard model with on-site interaction U and nearest-neighbor interaction V/d is stud-
ied at half filling in high dimensions (d))1). At small U and V the critical temperature and the order
parameter are calculated including the 1/d corrections. The results diff'er from those obtained in the
Hartree approximation by a factor of order unity A.t V/U= 1/2 a transition is found from an antiferro-
magnetic to a charge-density-wave phase. A similar transition is found at large U and V, suggesting that
the transition is present for all U and V satisfying V/U =1/2.

PACS numbers: 71.10.+x, 71.45.Lr, 75. 10.Lp, 75.30.I.v

Since its introduction in 1963 by Hubbard, Gutzwiller,
and Kanamori [1], the Hubbard model has become an
important standard model for correlated fermions on a
lattice. To illustrate its importance, we merely note that
it has been used to explain the metal-insulator transition
[1,2], antiferromagnetism [3], ferromagnetism [4], para-
magnetism at high temperatures [5], and, most recently,
superconductivity in the less-than-half-filled band [6]. A
well-known generalization of the Hubbard model is the
so-called extended Hubbard model, which also takes into
account the nearest-neighbor interaction. Until now, the
extended Hubbard model has been treated mainly on the
mean-field level [7,8]. In this Letter we will study the ex-
tended Hubbard model beyond the mean-field approxi-
mation on a hypercubical lattice in high dimensions.

The Hamiltonian of the extended Hubbard model has
the form

H =Hf+HU+Hv+H

~here

g (c.c,.+H.c.), H„= pgn-;,
Q2tl (iji, o. i

Hv =Up n;1 n;1, Hy =—Z n;n, .
l (ij)

Here c; (c; ) creates (destroys) an electron with spin o
at site i, n; =c; c;, n;=n;~+n;t, and d is the space di-
mension. The grand canonical Hamiltonian (1) describes
hopping of electrons (H, ), interacting with each other
through on-site (Hv) and nearest-neighbor (Hy) Cou-
lomb repulsion. The prefactors in H, and Hi are chosen
such that a finite, nonvanishing energy contribution is ob-
tained for 1 ee [9,10]. Below we choose U) 0 and
V&0, and t=1 to fix the energy scale. The original
Hubbard model corresponds to V=O in (1). The half-
filled band corresponds to p =

& U+2V.
Two years ago the concept of high dimensions was in-

troduced [9] as a new approach to correlated Fermi sys-
tems on a lattice. Since then, the study of high-
dimensional Fermi systems has been very fruitful [10,11],
and led, e.g. , to the exact solution of the Falicov-Kimball
model in d =~ [12] and to the recent study of mean-field

theories that become exact in high dimensions [13]. Un-
fortunately one of the most interesting goals, the exact
solution of the Hubbard (or extended Hubbard) model in
d=~, has not yet been reached. In this Letter we will
show that it is nevertheless possible to obtain valuable in-
formation about these models in certain limits.

The basic questions addressed in this Letter are as fol-
lows: What is the phase diagram of the extended Hub-
bard model at half filling? Mean-field theory predicts a
phase transition at low temperatures for all U and V:
Does it really occur? If so, what is the critical tempera-
ture? What is the temperature dependence of the order
parameter? Is the transition first or second order? The
strategy of this Letter is as follows. First, we study the
model at small interaction strengths U and V (which is
the more difficult case). Next we consider the opposite
limit, U ~ and V ~. In taking these limits we will

keep the ratio v=V/U fixed. Combination of these re-
sults then gives insight into the global phase diagram of
the extended Hubbard model at half filling.

We start with the thermodynamical properties for
U, V 0. The basic idea at small U and V is that the
thermodynamics of the extended Hubbard model in high
dimensions can be determined by applying perturbation
theory. The small parameters are, first the interaction
strengths U and V and, second, the inverse dimension 1/d.
However, the standard perturbation expansion (around
the Hartree solution) leads to incorrect results. To see
this we consider the Hartree approximation first [14].

The Hartree approximation is obtained by decoupling
the interaction terms in Hv and Hy in (1):

n; n; —(n; )n; +n; (n; )-(n; )(n; ).
Since we consider half filling, we make the usual assump-
tion [15] that the average density (n; ) is equal to

—, (1+5 ) on one sublattice (labeled by +), and equal to
—, (1 —A ) on the other (labeled by —). The symmetry
between a = t, $ then implies that either Al =hi [which
corresponds to a charge-density wave (CDW)], or d, l

[which corresponds to antifer rom agnetism
(AFM)]. The order parameter d, —=51 is denoted by 5 in

the Hartree approximation, and can be calculated from
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the consistency requirement (n; l )H = —,
' (I + 6 ) if

i C ( ~ ). As usual there are two solutions: a trivial solu-
tion 6, =0 and a nontrivial solution 6 & 0 that has aH

lower (Hartree) I'ree energy. We focus on the nontrivial
solution below. What does the Hartree approximation
predict'? The critical temperature T, in d dimensions
can be determined by putting 6 (T, ) =0 and solving for
T, as a function of U and V. The result is

k8 Tc exp Id0
2rt Uvd (0) (U, V-0), (2)

0= tanh[(y'+ S') '"/0]
dpop ( 2+ g2) 1 j2

tanhy (3)

The limiting behavior of B(0) for 0/0 and 0[1 can be
calculated analytically. For 0/0 one finds that 6(0) ap-
proaches the limiting value 8(0) = —, rre ' exponentially,
where ) =0.577. . . is Euler's constant. For 0[1 one ob-
tains mean-field critical behavior, 6(0)—A(l —0) ' with
2=1.53. Since B(0) =8(1), the order parameter 5 is

of order kltT, /U, which is exponentially small if U is
small. The gain in free energy Qz due to symmetry
breaking can also be calculated:

As (T) ——a U (A ) v (0)@(0) (UJO), (4)

where the constant Id is given by

vd (y)
Id = dy —tanhy —1+ —ln2.

y vd (0)

Here vq(y) is the density of states in d dimensions and
a=2U —

—,
' for the COW or e= —,

'
in the antiferromag-

netic (AFM) phase. Thus T„ is exponentially small if U
is small. One can introduce a rescaled order parameter

16—= —, aUA /kaT, and a rescaled temperature 0—:T/T, ,

which for U 0 are related by

tions by factors of the order of unity. To study the fluc-
tuations we use a method proposed very recently by
Georges and Yedidia [16]. The basic idea is to calculate
the free energy A(U, d, ) in perturbation theory at an arbi-
trary but fixed value of the order parameter 6:

fl (U, A) = no(h)+UQ, (6)+U'0 (8 )+ . (5)

The various terms in (5) depend implicitly on v and T
The equilibrium value of 5 is then determined by minimi-
zation of Q(U, A) with respect to A. In order to keep the
order parameter in (5) fixed one introduces a Lagrange
parameter h(U), which couples linearly to the staggered
magnetization (in the AFM case) or to the staggered
charge density (in the CDW case). The value of h(U) is
tuned such that 6 is fixed, at least up to the desired order
in perturbation theory.

The various diagrams that have to be calculated (up to
order I/d) in this approach are listed in Fig. 1. A vertex
HU is represented by a broken line, and a vertex Hy by a
wiggly line. The Green functions have the form of Har-
tree Green functions, with the usual energy gap replaced
by the Lagrange parameter ho—=h(0). The basic sim-
plification occurring in high dimensions is that the Green
functions (T,c;+, (r)c; (0)) in position space fall oA'

very rapidly with distance (eed ' as d ~). Hence
only the Green functions for ~s~ =0, 1 are needed to calcu-
late the free energy as a function of ho for U/0 up to or-
der I/d. These matrix elements can readily be calculated
in general dimensions d.

Minimization of t)(U, A) in (5) up to second order in

U yields the following results. The critical temperature
and the order parameter can be expressed in terms of a
scaling factor q (t ) —=exp( —Co —C ~

d ' ), with

Cp = ln tan
37K

2JXa'

where

( ) ) d 201 cosh[(y +6')'i 0]
cosh (y/0)

tanhy

(t2 —I )VC[=
2Q

1 3+ Cp + v+4v
64@ 32

(6)

Note that the lowest free energy is obtained for the state
with the largest value of a. Hence the system is in the
COW phase for v & 2 and AFM for v & 2, at least in

the Hartree approximation [7].
The fact that the prefactor of (A ) in (4) is small, of

order U for U/0, shows that one cannot use standard
perturbation theory around the Hartree solution to study
the fluctuations. The reason is that the contribution of
the second-order diagrams to the free energy gain is of
the same order of magnitude as As in (4). Hence the
thermodynamics at small U and V is determined by the
Hartree contribution and the fluctuations together —the
Hartree approximation alone leads to incorrect results.
Indeed, we will see below that the actual critical tempera-
ture and order parameter diA'er from the Hartree predic-

+e;
(b)

i+e,

I+e
(c)

I+e;

l+ BI

i+e;

(e) 1

(f)

FIG. 1. Some diagrams describing the fluctuations due to H(/
[graphs (b), (c), and (f)], Hv [graphs (a) and (d)], or both
[graph (e)l. The site index i and the lattice vector e, in the j
direction are summed over.
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The constants Co and C] are strictly positive, so that
q(v) & 1 for all v ~ 0. From the minimization procedure
to second order in perturbation theory one finds that the
actual critical temperature is reduced by a factor q rela-
tive to the Hartree prediction T, :

T, -qT, (U, Vj0) . (7)

Similarly the order parameter is reduced by a factor q
relative to 6 (T),

h(T) —qA (T/q ) (U, V j0),
and the free-energy gain due to symmetry breaking is

Ap (T)-q'nf (T/q) (U, V/0) .

(8)

(9)

sinh (2P VA)
eP +cosh(2PVd)

(10)

Equations (7) and (8) show that, if we redefine 8—= T/T,
and 6=——,

' aUd/kiiT, ., the relation between 6 and 8 is pre-

cisely the same as in Eq. (3) for the Hartree approxima-
tion. Combination of (4) and (9) further shows that
O~ & 0, i.e., that symmetry breaking is stable also if Auc-

tuations are taken into account. Another important point
is that the constants Co and C~ are smallest (so that T,
and

~

Aq.
~

are largest) if one chooses a =max[ —, , 2v ——,
' ].

This shows that the first-order transition between the
AFM and CD% phases, occurring at v = —,

' at the Har-
tree level, is robust against the inclusion of Auctuations
and I/d corrections.

We comment briefly on the calculation of q(v). The
leading contribution Co in (6) is solely due to graph (b)
in Fig. 1. The 1/d corrections represented by C~ come
from diagrams (a), (d), and (e), and from the 1/d terms
in diagram (b). The contribution of graph (c) is negligi-
bly small (of relative order U) [17]. An important point
is that the higher-order graphs due to 0~ yield vanishing-

ly small contributions as UJO. In particular, the contri-
bution due to the third-order diagram [graph (f)] is of
relative order U compared to graph (b), yielding only a
correction of order U to q(v).

Next consider the thermodynamics at large U and V.
The important point here is that the same transition from
an AFM to a CDW phase, that was found above for
small U and V, is also found for U, V ~. Just as for
U, V)0, the transition between these two types of symme-
try breaking occurs at v = —, .

The CDW phase is obtained for v & & . In this case
the kinetic energy is negligible (of relative order U ')
compared to the remaining terms in (1), so that the
Hamiltonian can be approx&mated by Hv+Hv+~„. In
d =~, Hy can be treated in Hartree approximation [10],
and the free energy can readily be calculated as a sum of
one-site contributions. As above, we parametrize the
density by 6, where now h. t

=h,
~
)0. The order parame-

ter h(T) can be obtained as the value of d, t for which the
free energy is minimal. The result is

where P—:I/kliT F.or v ~, (10) reduces to the well-

known Curie-Weiss form, with a critical temperature T,
=V/kg. In general, (10) implies that the phase transi-
tion is second order if t. & 3/(4ln2), or, numerically,
v & 1.0820. For —,

' & v & 1.0820 the transition is first or-
der, with a transition temperature that vanishes as v ] —;:
If V= —,

' U+e, then kgT, —e/In2 0 as e/0. No (non-
magnetic) broken symmetry phase exists for a&0, or

I

For v & —.
' the low-temperature phase has AFM order.

One can carry out a canonical transformation to new fer-
mionic variables in a subspace without double occupancy
[18]. As a result one finds [8] that (1) reduces for gen-
eral d to an eAective AFM Heisenberg Hamiltonian with

coupling constant J= —2/(dU —V). For d ~ this im-

plies that one has AFM order with a critical temperature
T, —I/kiiU. The order parameter satisfies the Curie-
Weiss relation 5 =tanh(A/8), with 0—:T/T, .

The transition from the AFM to the CDW phase can
easily be understood by considering the ground state. For
the CDW ground state (v & 2 ) the energy per site is

—, U, and for the Neel state it is V —6(U '). Hence the
transition occurs at v = &, at least if Uand Vare large.

Combination of the results for U, V/0 and U, V
leads to several interesting observations. The behavior of
the model for v & —' is qualitatively the same as that for
the pure Hubbard model (V =0): One finds antifer-
romagnetism both at small and at large interaction, with

T, exponentially small for U, V/0 and k&T, —U ' for
U, V ~. For v & & the low-temperature phase is a
CDW, but now T, increases proportionally to U or V as
U, V ~. Another interesting feature is the occurrence
of a change in the nature of the phase transition as one
passes from small to large U and V: For 2 & v & 1.0820
the transition is second order for small U and V, but first
order for U, V ~. The crossover between these two re-
gimes must occur at some finite value of U and V. Com-
bination of the results at small and large U and V further
leads to the following conjecture. Since the transition
from the AFM to the CDW phase occurs at v = 2, both
for U, V)0 and U, V ~, it seems plausible that v = —,

marks the boundary between both phases also at finite
values of U and V. Moreover, since the transition sur-
vives if one takes into account the 1/d corrections, it
seems likely that the transition is present in suSciently
high, and possibly also in lower (d =2, 3), dimensions. It
would be extremely interesting if this conjecture could be
verified.

In summary, we considered the extended Hubbard
model in high dimensions for small and for large values of
the interaction parameters U and V. For small U and V
we showed that the critical temperature and the tempera-
ture dependence of the order parameter, including the
I/d corrections, can be calculated from a recently pro-
posed perturbation expansion —the standard perturbation
expansion around the Hartree solution leads to incorrect
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results. We found that the actual order-parameter curve
has the same shape as in the Hartree approximation, but
both the amplitude of the order parameter and the tem-
perature scale are reduced by factors of the order of uni-
ty. For both small and large U and V one finds a transi-
tion from antiferromagnetism to a charge-density-wave
state at V/U= 1/2. The conjecture, based on the 1/d ex-
pansion, is that this transition is also present in finite and
physically relevant dimensions (d =2, 3).
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