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Edge States in the Fractional Quantum Hall Effect
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We have studied nonlocal electrical transport over macroscopic distances in the regime of the fraction-
al quantum Hall effect (FQHE). Experiments clearly demonstrate dissipationless edge-state conduction
associated with the FQHE. Surprisingly, our data imply that there is no edge-state conduction near
filling factor v=% and on the low-v side of the v=1 QHE state, while edge-state conduction is observed
near v=73 and on the high-v side of the v=1 QHE state. We also observe that the electron-hole sym-
metry is broken for the edge states in a confined geometry.

PACS numbers: 73.50.Jt, 71.45.—d, 72.15.Rn, 73.20.Jc

The integer quantum Hall effect [1] (IQHE) can be
understood in terms of transport by edge channels corre-
sponding to an integer number of fully occupied Landau
levels [2-4]. In this picture, near an integral Landau-
level filling v=1, when the chemical potential lies in the
gap of the localized bulk states, all current is carried by
the dissipationless edge channels and the Hall resistance
is quantized to h/ie% Dissipative transport (between
v=iand v=i+1) occurs because current is carried both
by extended bulk states of the partially occupied topmost
Landau level and by the extended edge states. Much ex-
perimental research on edge-state transport has focused
on two-dimensional electron systems (2DES) confined
within narrow and small gated devices, where the effect
of edge-state conduction is enhanced. Recent measure-
ments [4] of nonlocal four-terminal magnetoresistance
(FTMR) by McEuen et al., however, dramatically
demonstrate that edge-channel transport may be truly
dissipationless over macroscopic distances of ~1 mm in
2DES samples exhibiting the IQHE.

In the IQHE, interpretation in terms of edge channels
is straightforward since the edge channels are formed in
one-to-one correspondence to the bulk Landau levels
defined in the single-electron density of states [2-4]. The
fractional quantum Hall effect [5] (FQHE) occurs at cer-
tain simple rational values of v and is fundamentally a
many-body phenomenon. For v=1/m, where m is an odd
integer, the FQHE states are described very well by the
Laughlin incompressible states [6]. The rest of the
FQHE states occur at v=p/q, where g is odd. These
states, usually called ‘“‘hierarchy states,” have been ob-
tained in the Haldane-Halperin theory [7] and, more re-
cently, in the Jain theory [8]. These theories [6-8] de-
scribe only the bulk FQHE states, however.

Several theories of the edge states in the FQHE regime
have been proposed recently [9-11]. Chang and Cun-
ningham [12] and Kouwenhoven et al. [13] experimental-
ly studied adiabatic edge-state transport in gated sam-
ples; their results have been discussed in terms of “edge
channels” defined in the single-electron density of states.
Chang and Cunningham performed measurements of a
gate-induced barrier resistance on the v=1% and %

FQHE plateaus. Kouwenhoven et al. employed adjust-
able barriers as current and voltage probes and measured
the Hall resistance. They interpreted their results in
terms of selective population and detection of edge chan-
nels at v=7% and concluded that each fractional edge
channel contributes a conductance of + e ?/h.

In this paper we report observation of nonlocal magne-
toresistance in ungated 2DES samples in the FQHE re-
gime at arbitrary v. Our experiments unambiguously
(model independently) demonstrate dissipationless edge-
state conduction associated with the FQHE. We find
that the edge-state conduction persists over macroscopic
distances of several mm in the 2DES samples tested.
Surprisingly, our data imply that there is no edge-state
conduction near v=1 and on the low-v side of the v=1
IQHE state, while there is edge-state conduction near
v=73 and on the high-v side of the v=1 IQHE state.
We develop a picture of edge-state structure consistent
with these observations.

Standard, simply connected ‘“Hall-bar” patterns (see
inset in Fig. 1) were defined by wet etching of low-
disorder GaAs/AlGaAs heterojunctions with density
n=(7-12)x10'" cm 7% and mobility u=(6-20)x10°
cm?/Vs. A brief illumination by a red-light-emitting
diode was used to prepare a 2DES. FTMRs were mea-
sured using the standard low-frequency lock-in technique,
with measurement currents between 0.4 and 2 nA. Stan-
dard longitudinal R, was measured with current passed
between probes 1 and 4 and voltage measured between
probes 2 and 3 (Rj423) or 5 and 6 (Ri45¢). Hall resis-
tance R,, was measured across the Hall bar between
probes 2 and 6 or 3 and 5. Using the same Hall-bar pat-
terned samples, nonlocal FTMRs R 35 and R3s 26 were
also measured. For one such sample with a Hall-bar pat-
tern with 2.2 squares separating current and voltage
probe pairs, Fig. 1 shows the nonlocal FTMR as well as
R.. and R,,. The sample also displays FQHE at v= ¢
at higher B, not shown in Fig. 1. In Fig. 2, the nonlocal
FTMR trace is blown up for v= 1. In Fig. 3(a) we show
nonlocal FTMR data taken at several different tempera-
tures. Ry, at 350 mK is shown in Fig. 3(b) for compar-
ison.

© 1991 The American Physical Society 749



VOLUME 67, NUMBER 6

PHYSICAL REVIEW LETTERS

5 AUGUST 1991

2/3 477

2/5 1/3 277

Y T T L

20 mK 3/5

20

Ri14,56) [kQ)

3/7

Ri14,35) [h/ez]

Ri3s,26)

MAGNETIC FIELD [T]

FIG. 1. Longitudinal (Ri456), Hall (Ry43s), and “nonlocal” (R3s.2¢) four-terminal magnetoresistances (FTMR) obtained in the
sample geometry shown in the inset. While nonzero longitudinal resistance implies dissipative transport, nonzero nonlocal FTMR im-
plies current transport by both dissipative bulk and dissipationless edge states at that filling factor v. Note the qualitatively different
shapes of the longitudinal and nonlocal FTMRs. R3s.2 is magnified by a factor of 3 compared to Rss6. Inset: Outline of the sam-

ple (“Hall bar™); thick-line rectangles are the contacts.

Examination of Figs. 1-3 immediately reveals drastic
differences between R, and the nonlocal FTMR. In the
nonlocal FTMR data of Fig. 1 regions of negligibly small
resistance correspond to prominent peaks in R,,. For
classical, dissipative, homogeneous 2DES transport in this
geometry, Rj3s 26 (nonlocal FTMR) would be the same as
Risse (Ric), except for being reduced by a B-inde-
pendent geometric factor of ~10 "3 (R3s 5 resistance at
B=0is 1.3x10 3R,,). At high B, however, peaks in
nonlocal FTMR are roughly 3% 10 7! of those in R,,, far
from being attenuated by 10 3. The nonlocal FTMR
also differs qualitatively from R, in positions and widths
(in B) of peaks, even in the presence or absence of some
peaks. R, and the nonlocal FTMR demonstrate mark-
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FIG. 2. Nonlocal FTMR expanded for v=1.
nonzero nonlocal FTMR near v=1%.
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edly different dependences on temperature, as is shown in
Fig. 3, also inconsistent with dissipative bulk-only trans-
port. At 350 mK, the magnitudes of peaks in R,, gen-
erally decrease little, while the peaks in the nonlocal
FTMR all diminish considerably with increasing temper-
ature, so that only three are discernible above 300 mK.

The above data and observations demonstrate adiabatic
transport in the FQHE regime. The occurrence of
nonzero R, does imply existence of dissipative current
paths (in the bulk) generating potential differences within
the 2DES sample. However, nonzero nonlocal FTMR of
comparable magnitude implies that at certain v potential
differences extend unattenuated (dissipationless trans-
port) for macroscopic distances ~1 mm away from dissi-
pative bulk current paths. Thus, our data demonstrate
that dissipationless edge states exist in the FQHE, similar
to the IQHE regime. It should be noted that this nonlo-
cal transport behavior, which requires suppression of
scattering between the edge states and the bulk, is not a
prerequisite for QHE. Thus, relatively precise Hall resis-
tance quantization and the corresponding minima in R,
are observed at higher temperatures, at lower magnetic
fields, and at higher applied currents, where nonlocal be-
havior is suppressed (Figs. 1 and 3).

The IQHE is usually treated within the second quanti-
zation (single-electron density of states), while the FQHE
is understood in terms of wave functions describing the
relevant many-electron states. As was pointed out by
Jain [8], the IQHE can be equally well understood in the
language of many-electron wave functions. In this
language we can consider the IQHE states |i) corre-
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FIG. 3. (a) Nonlocal FTMR at higher temperatures; all
traces have same resistance scale. Note the markedly different
temperature dependences of the peaks at 5 and 6 T and also of
the peaks at 9.5 and 12.5 T (discussed in the text). The origin
of the weak peak at 4.5 T is not known at present; its disappear-
ance at 65 mK seems to rule out the v=1 IQHE state. (b)
Longitudinal (R 4.5¢) FTMR at 350 mK.

sponding to an integer number of fully occupied Landau
levels (LL); then quasielectrons are simply the occupied
states of the next higher LL and quasiholes are the empty
states in the topmost filled LL. States |v) at v such that
i <v<i+1 can be viewed, equivalently, as the |i) state
plus v—i quasielectrons or as the |i+1) state plus
i +1 — v quasiholes.

In the wave-function language, in the IQHE regime,
the sample can be considered as an |i) state extending
from edge to edge plus the interior of the sample
(“bulk”) containing the quasiparticles needed to produce
the given v. The |i) state at the periphery of the sample
constitutes the edge channel [14]. This picture applies
equally well to the FQHE. We first consider the case of
exact filling, where v=p/q in the interior of the sample.
In this situation the edge channel is the same |p/q)
FQHE state as the bulk state, or, in other words, the bulk
state extends throughout the sample. If a potential
difference Su is created between a pair of contacts to such

sample, a (net) current of (p/q)(e*/h)du is carried
along one side (determined by the direction of B) of the
sample between this pair of contacts. The carriers are
electrons, according to Ref. [8], for any |p/g).

As v is varied from exact filling, quasiparticles are
created in the interior of the sample thus forming the
bulk state; the edge states remain unaffected until the de-
viation from the exact filling is substantial. The quasi-
particles are localized by the disorder potential so that no
current is transported through the bulk and R,, is still
quantized [6]. As the deviation from the exact filling be-
comes larger, the bulk state becomes delocalized and a
part of the current is carried by the bulk and the
remainder by the underlying edge channel.

The precise nature of the bulk state in this regime is
not known at present [15], but our data imply that the
edge channel is derived from the rearest observed exact-
filling QHE state at lower v. For example, consider the
nonlocal FTMR peaks on either side of v=2% in Fig. 3.
The peak at B=5 T (v> %) survives to a higher temper-
ature than the peak between v=2 and 1. This fact
strongly suggests that the peak at B=5 T is supported by
the | §) state while the peak between v=% and % is sup-
ported by the weaker | #) state. Likewise, the nonlocal
FTMR peak at 12.5 T is supported by the | #) state; it
disappears by 160 mK, while the peak at 9.5 T, supported
by the | +) state, is prominent even at 350 mK. These
observations imply that the electron-hole symmetry is
broken in a confined geometry. Thus, in our picture, the
edge current is always carried by electrons, while the bulk
current may be transported by fractionally charged quasi-
particles [6,8] when the underlying state is a FQHE
state. There is substantial difference in strength of the
FTMR peaks | +)— | %) and | $+)— | ), which seems to
be consistent with Jain’s theory [8,15].

This picture implies a relatively large gradient of the
confining potential defining the edge of the sample. This
situation seems always to be realized in heterostructure
samples [16]. If the gradient of the confining potential
could be made very small, less than ~0.1en/¢, the sam-
ple can be considered to be nonuniform, with lower-n re-
gions on the periphery of the sample forming multiple
edge channels [9-11].

Within the above qualitative description of QHE trans-
port, more conclusions arise regarding edge states in
specific regimes of FQHE. Nonzero R, and zero nonlo-
cal FTMR over an interval of B near v= % implies ab-
sence of a distinct dissipationless edge channel in this re-
gime. Indeed, within the edge-state picture discussed
above there is no underlying incompressible FQHE state
near v=+ since v=1% lies between sequences of the
FQHE states. Thus, there is an edge channel of the un-
derlying | $) state in the range of 3 <v< ?, and there
is an edge channel of the underlying | %) state in the
range of ¥ <v < %, but there is no underlying FQHE
state for ¥ <v=< % around v=+.
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Nonzero nonlocal FTMR at v=3 (see Fig. 2) arises
from the edge channel of the IQHE state |v=1). It is
easy to see that while the | ) state can support an edge
channel for 7 <v< ‘2, at some v in this interval the
FQHE correlations of v=1% disappear while the IQHE
correlations of |1) emerge and persist in the range of v
near 3. This is in contrast to situation near v= %, where
no other QHE state may emerge to support an edge chan-
nel. The absence of nonlocal FTMR in the range of
3 < v=1, on the low-v side of the |1) state, likewise im-
plies absence of a distinct dissipationless edge channel in
this regime and is explained in a similar manner.

In conclusion, we presented experimental observation
of nonlocal four-terminal magnetoresistance in the
FQHE regime. These experiments demonstrate existence
of edge channels, distinct from the bulk and dissipation-
less over macroscopic distances of ~1 mm. Our experi-
ments demonstrate that in the FQHE, unlike in the
IQHE, there is no one-to-one correspondence between the
peaks in Ry, and the nonlocal resistance. This qualitative
difference gives insight into the fundamental nature of
the bulk FQHE states.
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