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Mechanical Parametric Amplification and Thermomechanical Noise Squeezing
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A mechanical degenerate parametric amplifier has been devised which greatly increases the motional
response of a microcantilever for small harmonic force excitations. The amplifier can improve force
detection sensitivity for measurements dominated by sensor noise or backaction eAects and can also pro-
duce mechanical squeezed states. In an initial squeezing demonstration, the thermal noise (Brownian
motion) of the cantilever was reduced in one phase by 4.9 dB.

PACS numbers: 62.30.+d, 04.80.+z, 05.40.+j, 06.30.—k

Techniques that improve the sensitivity for detecting
small forces are of interest in fields such as atomic force
microscopy [1] and gravity wave detection [2]. Both
attractive-mode force microscopes and resonant bar grav-
ity wave detectors utilize a mechanical oscillator whose
motion constitutes the signal of interest. Typically a
measurement is made by first converting the mechanical
motion into an electrical signal via a transducer and then

amplifying the electrical signal. In some cases, back-
action-evasion techniques can be employed to minimize
(in one phase) the noise coupled back to the mechanical
oscillator from the inherently noisy electrical amplifier
[2-5].

In this paper, we explore a new force measurement
strategy wherein the motion of the oscillator is mechani-
cally preamplified by a large factor before transduction
using a mechanical parametric amplifier. The amplifier
incorporates a silicon microcantilever as a mechanically
resonant element, operates in the degenerate mode, and is

electrically pumped. A mechanical amplifier of this type
is of fundamental interest because, in principle, degen-
erate parametric amplifiers can be noise-free down to the
quantum-mechanical level [6,7]. In practical applica-
tions, mechanical preamplification can improve force de-
tection sensitivity in cases where sensor noise or backac-
tion eAects dominate. In addition to its utility for ampli-

fying subangstrom mechanical signals, the amplifier can
be used to produce mechanical squeezed states. In par-
ticular, the amplifier has been used to produce a classical
squeezed state where the thermal vibration (Brownian
motion) of the microcantilever is reduced in one phase to
an amplitude substantially smaller than the usual thermal
equilibrium value. We believe that this is the first
demonstration of thermomechanical noise squeezing.

The basic elements of the mechanical amplifier and as-
sociated measurement apparatus are shown in Fig. 1. A
silicon microcantilever, similar to those developed for
atomic force microscopy [8], is used as a mechanical
resonator. The cantilever is 500 pm long, 10 pm wide,
and several micrometers thick. It has a resonant frequen-
cy of 33.57 kHz, a spring constant on the order of I N/m,
and a Q value greater than 10 in vacuum. The motion
of the cantilever is monitored with 10 -A/4Hz sensi-
tivity by an interferometer built from fiber-optic com-
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F, is the electrostatic force exerted on the cantilever by
the electrode, x is the cantilever displacement, and C is

the electrode-cantilever capacitance.
The behavior of mechanical parametric oscillators

(such as the child's swing or the parametrically driven

pendulum) have been studied since the nineteenth centu-

ry [10,11]. The analysis of our system diAers from this
previous work in that the pump strength in our experi-
ment is maintained below the threshold for self-sustained
oscillation. The analysis we present below has much in

common with the analysis of electrical parametric
amplifiers [12].
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FIG. 1. Block diagram of the mechanical parametric
amplifier and associated measurement apparatus. The spring
constant of the cantilever is modified (pumped) at frequency
2&op by the electric field from the capacitor plate.

ponents [9]. For characterization purposes, such as gain
measurement, the cantilever can be mechanically excited
via a piezoelectric (PZT) bimorph.

To create a parametric amplifier effect, a means is re-
quired to periodically modulate (pump) some parameter
of the mechanical oscillator, such as the spring constant.
This is accomplished by positioning an electrode to within

50 pm of the cantilever and applying a time-varying volt-

age V(t). The gradient of the electrostatic force from
the electrode has the eAect of modifying the spring con-
stant according to

k(t) =ko+k, (t),
where ko is the unperturbed spring constant and
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We model the cantilever as a driven harmonic oscilla-
tor with time-varying spring constant. The equation of
motion is

dx
a = jN]x, (5)

where j=4—
1 and

tp =top[(I —1/4Q') 't'+ j/2Q].

The inverse transformations are

a —a*X=
j(tp) +to) '

co]a+co~ a*
~~ +~]

(6)

(7)

Substituting (7) and (8) into (3) and then performing a
series of algebraic manipulations yields the simplified
equation of motion

da . + . kp(t) a —a* + F(t)=jtp&a+ jdt m to] +tp~ m
(9)

We solve (9) in the limit of high Q for a driving force
F(t) at resonance given by

F(t ) =Fpcos(tppt +p) .

The pump voltage V(t) is assumed to have the form
V(t ) = Vp+ Vp sin2tppt. Substituting this into (2) and re-

taining only the 2co0 term, the time-varying spring con-
stant is found to be

kp (t ) =d,k sin 2topt,

where dk =(8 C/Bx ) Vpvp.
We look for steady-state solutions of (9) which have

the form

a(t) =4 exp(jtppt), (i 2)

where A is a complex constant. Substituting (10)-(12)
into (9) and retaining the terms containing exp(jtppt)
(high-Q approximation), we find

j(tp) —
happ)W —,W + e" e' ' =0.ak 0 ' Jcopr

2m(co~ +co&) 2m

700

m + + [ko+k (t)]x =F(t), (3)

where x (t ) is the cantilever displacement, F(t ) is an
external driving force, Q is the quality factor of the reso-
nance, and co0 is the resonant frequency of the cantilever.
m, k0, and co0 are related by k0=mco0.

Using the normal-mode approach described by Louisell
[12] for electrical parametric amplifiers, we introduce the
tran sformations

dxa = +jco~ x,
dt

Noting that, to first order in 1/Q, tp~ + cp~ = 2tpp and tp~
—cop = jtpp/2Q, we find

kp

cosp + . sing
1+Qhk/2kp 1

—Qhk/2kp
(i4)

If we write the cantilever motion as x(t) =X~ costopt
+Xqsincppt, then X~ =1m'/cop and X2 =ReA/cop.

The gain of the amplifier is

Ipumpon I IpumponIxl
(1S)

IXI pump op I& I pumpotr

where IXI =(X~+X2)' . Using (14) and the definition
of h, k, the gain is given by

(i6)cos P + sin P
(i+ v, /v, )' (1 —v, /v, )'

where V, =2kp/Qvp(8 C/Bx ).
As expected, the gain of the amplifier is phase sensitive

and is maximum for p=tt/2. The gain for this phase in-

creases with increasing pump strength and goes to infinity
as V~ V, . This is the threshold for parametric osci11a-
tion, a condition that is easily achieved in our experi-
ments. To use the device as an amplifier, we operate with

V~ & V, . For the phase &=0, the gain is less than unity
and decreases with increasing pump strength. The
greatest deamplification that can be obtained in this
phase without oscillation of the quadrature phase is
achieved for Vp V„yielding G(0)

In the experiment, the amplifier gain is measured by
driving the cantilever sinusoidally with the PZT bimorph
and using the fiber-optic interferometer to observe the re-
sulting cantilever oscillation. A two-phase lock-in am-
plifier is used to determine IXI both with and without the
pump voltage present. Typical values of IXlp„p, p were
on the order of 1 nm. The cantilever Q value was approx-
imately 1&10, obtained in a vacuum of 9&10 torr.
The pump parameters were V0=10 V and Vp in the
range of 0-2.5 V.

Figure 2(a) shows a comparison of the measured and
theoretical amplifier gain as a function of pump voltage
Vp. The theory in (16) is fitted to the experimental data
using V& =2.6 V. Excellent agreement between theory
and experiment is obtained for both the amplified and
deamplified phase. The plot shows experimental gain
values up to 25. Gain values as high as 100 could be
readily achieved, although precise measurement was
difticult since the amplifier is very close to spontaneous
oscillation at such high gain.

The experimental and theoretical phase response is
shown in Fig. 2(b). The experiment was performed using
V~ =2.5 V. The theory was fitted using this value of V~
and a threshold voltage V, =2.65 V. Again, the agree-
ment between theory and experiment is excellent.

A mechanical amplifier of the type described above
may provide a significant advantage for detecting small
harmonic forces when the measurement is dominated by
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(3

The force measurement is optimized by choosing the opti-
cal power Io so as to minimize ((Ax) h„&+((Ax)b,, &. The
optimum value of lo is found to be Io =koch/442xGQ
and the minimum detectable force is

Fp;„=(J2hkpdf/zQG) 'i . (zl)
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FIG. 2. (a) Parametric amplifier gain as a function of pump
voltage. Results for both the amplified and deamplified signal
phases are shown. (b) Phase dependence of the gain. In both
(a) and (b), the points are experimental values and the curves
are from the theory in Eq. (16).

where Io is the optical power, k is the wavelength, and Af
is the measurement bandwidth. For unity signal-to-noise
ratio li.e., ~X~ =((Ax),q,&&' ], the minimum detectable
signal force is found to be inversely proportional to the
amplifier gain and given by

]/2

(i8)
GQ S~'I,

In addition to shot noise, the interferometer measure-
ment also generates a backaction-noise force due to the
statistics of photons impinging on the cantilever. This
backaction force is given by [13]

((~F)b„&=4I,h~f/c) .

For a narrow bandwidth about resonance, this random

sensor noise or backaction-induced noise. Consider the
case of a cantilever harmonically driven at resonance by a
small signal force and monitored in a fixed narrow band-
width by an interferometer. A signal force of the form in

(10) gives rise to cantilever motion ~X~ =GQFo/ko. If
shot noise of the interferometer is the dominant noise
source, then the uncertainty in cantilever position is [13]

((~x),'...& =(Ic~/8~'Io)~f,

Whether considering shot noise alone or both shot-
noise and backaction effects, the results in (18) and (21)
clearly demonstrate that force sensitivity can be sig-
nificantly improved by using a mechanical amplifier with
high gain. The advantage of mechanical preamplification
is a general one and is valid for other measurement tech-
niques besides interferometry. With respect to backac-
tion eAects, the essential point is that mechanical
preamplification increases the mechanical signal so that
the coupling e%ciency of the transducer can be reduced
without net loss of transducer signal-to-noise ratio; the
backaction-noise force is smaller as a result of the re-
duced transducer coupling e%ciency. In this sense,
mechanical preamplification is an alternative to backac-
tion evasion.

The preceding discussion neglected the thermal vibra-
tion of the cantilever, an assumption that would be valid
at su%ciently low temperatures. When thermal vibration
is the dominant noise source, as was the case in our
room-temperature experiments, then mechanical pre-
amplification yields no net improvement in force sensitivi-
ty. This is because the signal and thermal vibrations are
amplified by equal amounts. Nevertheless, the room-
temperature device is interesting because of its ability to
produce mechanical squeezed states.

In a narrow bandwidth, the thermal noise can be divid-
ed into quadrature phases x(t) =A'~(t) cosroot+A'2(t)
xsinruot, where X~(t) and Az(t) are random variables
that vary slowly compared to coo. X&(t) and X2(t) were
measured by the two-phase lock-in amplifier (time con-
stant =0.3 sec) and the results sampled every 0. 1 sec by
a digital oscilloscope.

We plot in Fig. 3(a) sampled values of X~ vs Xq taken
with the pump off' (i.e., at thermal equilibrium). As ex-
pected, the measured noise distribution is independent of
phase [i.e., the distribution of A'~ vs A'2 is circularly sym-
metric in Fig. 3(a)]. A histogram of A'q values is shown
in Fig. 3(b), along with the Gaussian curve that is the
best fit to the histogram. The variance of Xq was found
to be 0.053 A . The noise measurement was then repeat-
ed with the pump turned on. Figure 3(c) shows the result
with the amplifier operating such that the amplified phase
experiences a gain of about 4.7 and the deamplified phase
has gain of 0.56. As a result of the phase sensitivity of
the amplifier, the noise has been reduced for X2 at the ex-
pense of increased noise in X]. In other words, the
thermal vibration noise has been squeezed. The paramet-
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in optical parametric amplifiers [18,19].
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ric amplifier has reduced the Xz variance to 0.017 A, a
4.9-d B reduction relative to the thermal equilibrium
value. This variance corresponds to the thermal equilibri-
um noise one would measure if the cantilever were cooled
to 96 K.

To the authors' knowledge, this result is the first
demonstration of thermomechanical noise squeezing.
This effect is the classical mechanical analog of quantum
noise squeezing, which has been demonstrated using
parametric amplifiers [14,15] and other techniques
[16,17] for electromagnetic waves at both optical and mi-
crowave frequencies. Mechanical noise squeezing may
eventually be useful for preparing mechanical resonators
(such as gravity wave detectors) in a low-noise initial
state. Since the deamplification achievable without para-
metric oscillation is limited to 6 (0) = —, , the noise
squeezing from our device is presently limited to —6 dB.
A similar squeezing limit was found for intracavity fields

FIG. 3. (a) Thermal vibration noise measured with the pump
turned off' (thermal equilibrium) and plotted in the A'I-X2 phase
plane. The circularly symmetric distribution is the result of
4000 measurements taken every 0. 1 sec. (b) The histogram
shows the relative probability of occurrence for the A2 values
shown in (a). The smooth curve is the best-fit Gaussian with

0.053-A-' variance. (c) Thermal noise measured with the
amplifier pump turned on. As a result of the amplifier phase
dependence, the noise distribution has been squeezed. (d) His-
togram and best-fit Gaussian for the X2 values in (c). The
squeezing effect reduces the X2 variance to 0.017 A'-.
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