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It is shown that the frequency-temperature spectrum recently observed by Wu et al. in developed con-

vective turbulence, Frr(w) ocw ™"

, follows from the condition that the entropy flux in k space is con-

stant, just as the Kolmogorov-Obukhov spectrum of barotropic turbulence, Fyy (k)==(g/p)*3*k ="', fol-
lows from the condition that kinetic-energy flux €(k) =e. On the contrary, for convective turbulence

e(k) changes as k ~%°

because of conversion of kinetic energy into a potential energy, which leads to a

stronger k dependence of the double velocity moment [Fyy (k) ek ~2'] than that for barotropic tur-

bulence.
PACS numbers: 47.25.—¢

Recently, the turbulent motion of helium gas in con-
vective cells heated from below at very high Rayleigh
numbers Ra (up to 4x10'*) was studied [1]. The flow in
the center zone of the cell (without mixing zone and
boundary layer) is homogeneous and, as is believed,
characteristic of free-convection flow. The frequency
power spectrum of thermal fluctuations at the center of
the cell Frr(w) reflects properties of this flow. As Ra in-
creased above 103, the power spectrum acquired the form

FTT((D)‘ZCU_“, (1=1.4i0.05, (])

in some region of ®: Wmin < @ < Omax. At Ra=7%10'0,
wmux/wmin=30 [1]

The physical concept of fully developed free-convective
turbulence given in this Letter explains spectrum (1).
Let me briefly recall the Kolmogorov-Obukhov (KO)
concept of developed barotropic turbulence [2], which is
based on Richardson’s cascade model with the largest ed-
dies produced by the forces driving the flow. Being un-
stable, these eddies of size L.y split into smaller ones,
producing unstable eddies again and again. The last-
generation eddies of size L, <KLy are still stable and
can only dissipate due to viscosity. Assuming that in this
cascade all statistical details related to the source of ener-
gy, except for the energy flux € in k space, are lost, KO
found the following expression for the double velocity mo-
ment in the inertial interval of scales (L¢y > 1/k > Lin):

Fvy (k) =ckole/p) Pk ~"/3, 2)

In this Letter we will show that spectrum (1) can also be
derived from Richardson’s cascade model [2]. However,
it is another integral of motion, namely entropy, whose
flux determines the inertial interval part of the spectra.
Let us consider a free-convective turbulence at Ray-
leigh number Ra=pBgAL>*/vk>>1, with B being the
volume expansion coefficient, g the gravitational accelera-
tion, L the size of the system (central zone of a box), A
the temperature fluctuation, and, finally, v and « the ki-
nematic viscosity and the thermal diffusivity, respective-
ly.® Because of buoyant acceleration, temperature fluc-
tuations produce L eddies with some velocity v. At

Ra.> 1, their Reynolds number Re(L) =vL/v>> 1, which
means that they are unstable. The L eddies cause
Richardson’s cascade of decays which gives rise to eddies
of different sizes / in the inertial interval. In the field of
the L-eddies’ temperature gradient the turbulent velocity
field v(r,t) produces temperature fluctuations of various
sizes / which interact with eddies of the same size because
of the buoyancy effect. It is important that eddies of
different sizes can exchange different amounts of energy
with the gravitational field. As a result, the energy flux
e(k) being transferred from k eddies to those of smaller
size will no longer be constant [see (18)]. Therefore it is
quite expected that the spectrum of convective turbulence
does differ from the KO one.

Conservation laws.—We consider fluid behavior
governed by the usual equations for free convection [4]:

%+(V~V)v +Vp/p—g=vAv, 3
90 4 divpy =0, (4)
ot
—/—’-—6(6:) +divj=«|VT|/T?
2
av. av 2 6ve
_n ! +___"___ e
2T | dxp  ox; 3 *ox, |’ (5)

j=psv—«kVT/T and n=vp. Here s is the entropy of unit
mass and j is the entropy flux in the r space. In barotrop-
ic turbulence the fluid temperature 7'(r,7) and the densi-
ty of entropy ps(r,z) are constant and Eq. (5) becomes
trivial. In the inertial interval (where energy pumping
and dissipation are not essential), within the Euler equa-
tion the total energy

E=G/2) [ Iva,0)2dr= [ EGk,0)dk ©)

is conserved in the incompressible limit. Therefore

E (k,t) may be written in the divergent form
OE (k,1)/dt +de(k,1)/0k =0. @)

Thus the stationary condition 8E (k,t)/dt =0 is equiva-
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lent to the well-known statement that for barotropic tur-
bulence the kinetic-energy flux e(k,t) does not depend
onk.

In the presence of temperature fluctuations Eq. (5) be-
comes nontrivial. It describes the conservation law of the
total entropy S of the system in the inertial interval [4]:

ds/dr=0, s@ = [ psr. )

We shall assume that the temperature fluctuations are
small:

T'O=T(0 = To< To= [ (TGedr [ [ dr.

(T is the mean temperature of the system and the angu-
lar brackets denote ensemble averaging.) Then the densi-
ty of entropy (ps) can be expanded into a series in T

ps =poso+[8(ps)/dT1, T' —bT"?/2+ - - - . ()

Here b= —[8%(ps)/dT?1,, > 0. The first term is not in-
volved in the equation of motion and may be omitted.
The second term in not essential in a statistical sense
since in the inertial interval (T')=0. Thus, the first non-
trivial term in (9) is proportional to 7'2. Terms omitted
in (9) (which are & 73, 7" .. .) are small. As a result,
one has the following equation for the total mean entro-

py:
(s@y=4b [<T@0Dar=4b [ Frroak.  (10)

Here Frr(k,t) is the simultaneous pair correlator of tem-
perature fluctuations in the k representation. Equation
(10) allows one to introduce an entropy density in k
space,

S(k,t)=(bk2/2)fFTT(k,Q,t)dQ, (11)

in such a way that the total entropy S(z) is [S(k,r)dk
lin (11) @ is solid anglel. In the theory of turbulent con-
vection the entropy density S(k,) plays the same role as
the energy density E (k,z) in the theory of barotropic tur-
bulence. By analogy with (7) one can obtain a continuity
equation for entropy density in the inertial interval:

9S8 (k,1)/0t+0uk,t)/dk =0. (12)

Here u(k,t) is entropy-density flux in k space. In the
stationary case S(k,t) is independent of time. According
to (12) the flux u has to be independent of k in the iner-
tial interval (like the energy-density flux & for barotropic
turbulence). Note that according to Egs. (9)-(12) u(k)
=27bN(k), where N is the influx of the mean “fluctua-
tion intensity” (T '*/2) which was introduced in the theory
of convective turbulence by Boldgiano [5] and Obukhov
[6]. They also assumed that 7'« T and started from
Egs. (3)-(5), written in the Boussinesq approximation
(BA). However, in the BA, Eq. (5) conserves not only
J T"*(x,t)dr but also f ®(T'(r,t))dr, where ® is an arbi-
trary function of 7'. Therefore it is not quite clear what
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function @ determines the turbulence spectra. Only a
single function—the total entropy of the system S(z)
—has physical meaning beyond the framework of the
BA.

Dimensional analysis of the problem.— Let us now list
the dimensional parameters which affect the velocity and
the temperature fluctuations of free-convective turbulence
in the inertial interval: L;, </< L., We believe that
viscosity v and thermal diffusivity x are not essential due
to the inequality /> Li,. We also assume that in the cas-
cade the process of entropy transfer between eddies with
different scales is local and all statistical details related to
a drain of entropy on the largest scale L., are lost except
for the entropy-density flux u. Besides u (or N) the list
of essential parameters includes the wave vector k and (in
the BA) the factor Bg. Using u, Bg, and k the double
moments of the v and 7" fields can be constructed only as
follows:

Fov(k)=cp, (G ) sy =215 R
FTT(k)=CTTT(%(r2/G)2/5k _”/5, (13)
FTV(k) =C'[‘yT()(r3(;) I/Sk —19/5 .
Here cyy, crr, and cyr are the dimensionless universal
factors which do not depend on the condition of tur-
bulence excitation, G=pgT, is a characteristic accelera-
tion, and I'=2nu/pc, is the entropy flux in the system.

Physical picture of the free-convective turbulence.
— Equations (13) give

02D =(ve+1,1) —v(r,0)|H=(GX) ",

T =T+ 1,0) = T'(r,0))1D=T3@YG) """,
(14)
To-Ge+1,0) — v (e,) T (e +81,t) = T'(r,0)])

=To(3G) 51"

|4

vy =%, .UTT=%’ HTy =735 .
The scaling indices uyy and 7y were obtained by Pro-
caccia and Zeitak [7] in the dynamical approach. Rela-
tions (14) allow one to estimate (I) the characteristic ve-
locity v (/) of / eddies (eddies of size /), (II) their rotation
frequency y(/)=v(l)/] and lifetime 7 ()=1/y(1), (11I)
their amplitude of temperature fluctuation T'(l), and,
finally, (IV) current Rayleigh and current Reynolds
numbers for | eddies:

Ra()) =BT (D13 /vy=(G?) 515/ vy
(15)
Re() =v(D1/v=(TG?2)518/5/y

In our rough estimations we took the Prandtl num-
ber (defined as P=v/y) equal to unity. Then Re2(/)
=Ra(/). Now from the relation Ra(L;,)=Ra.,=1
[which is the same as Re(Li,)=Re,=1], one can esti-
mate the internal (dissipation) scale:

Lin=Lex(Rac/Ra)>"*=L (Re./Re)** . (16)
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It is interesting to compare estimates (15) and (16) for
convective turbulence with the similar ones for barotropic
turbulence:

v el y() el 73 and Lin=Lex(Rea/Re) Y.

Let us now find the y dependence of the rate of entropy
production Tpein(y) due to thermal diffusivity. Using
(5), (9), and (13) we obtain

rpr.1h=27r)(f[|VT|2/T2]dr

=2err2(T%6) 5 [ k5 dk
~ 2 (TYG) k.

The integral diverges at k— oo and has to be cut off at
Kk max=1/Lin. Substituting L, from (16) we find that
Ipr.ih does not depend on y and equals the entropy flux in
the system I'=2nu/pc,. It is a stationary condition (for
entropy) which shows that our considerations are self-
consistent. At the same time I' has to be equal to the rate
of entropy extraction from the system I'ex;. The decrease
in entropy is due to nonequilibrium processes which ex-
cite convective turbulence (like mixing of cold and hot
fluids, heating of a fluid from below, and so on [4]). Fol-
lowing KO we assumed that all details of these processes
are unimportant in the inertial interval except for [exy =T
which determines the level of turbulence excitation via
(13). It is also interesting to estimate the rate of entropy
production due to viscosity:

1—‘pr.v= (V/Cp T()) f k 2FVV (k)dk
=(v/c, To)(GT) k35,

=I(GL?/v)?/c,ToRa>*.

The ratio [p.v/Tprn tends to zero at Ra— oo. So, the
main process of entropy production is thermal diffu-
sivity.

Let us now find the k dependence of the energy flux
e(k). From (6) it follows that

(0,0 v (r,t )/t =C(c (- V)o)=0v3(r)/r.
Thus

9 v3(r) exp(ik-r)dr __ v3(1/k)
—Fyy(k,t)= = . 17
2 rwtn=J > A (17)
By comparing (17) and (6) and (7) we have &(k)
=pkv*(1/k) and using the estimate v(/)oc/ '3 for
barotropic turbulence, we obtain that (k) is constant.
However, for convective turbulence one can obtain, using

15),
e(k)=p(GT)¥k =45 (18)

The buoyancy term — BgT' leads to an additional term

in the equation of continuity for kinetic energy (7):

AE (k,t) |, oelk,t)
at ok

=_pﬂgszFTV(Q,k)dQEITV(k). (19)

Using (13) we have Iy (k)=p(GT)*k > which
equals (within our accuracy) 9¢(k)/d@k. Thus, Eq. (19)
for 0E/dt =0 is the stationary condition for the kinetic
energy of k eddies.

The next question is the following: What is the direc-
tion of energy fluxes? It is known that in thermodynamic
equilibrium [when Fyy (k) =To/p and does not depend on
k] the energy flux £(k) is zero. If F (k) decreases with
increasing k, the interaction between eddies leads to the
equilibrium value Fyy (k) =const. Therefore, the energy
flows from small k (where Fyy is large), which is valid
not only for the KO spectrum (2) but also for our spectra
(13). As a result, for free-convective turbulence (k) >0
and 9¢/0k <0. Then from (19) it follows that I7y (k)
< 0. This means that the kinetic energy of k eddies is
lost through work done against buoyancy forces in the
inertial interval of scales, i.e., kinetic energy is converted
into potential energy of the fluid, controlled by the tem-
perature. For this reason the kinetic-energy power spec-
trum Fy, (k) of the convective turbulence (13) decreases
faster with increasing k than the KO spectrum (2) with
g(k) =const. Therefore, spectra (13) initially were sug-
gested in [5] and [6] only for mechanically excited tur-
bulence in a fluid with stable thermal stratification.
(Note, that such a statement is valid for only a very nar-
row range of turbulence-excitation parameters [8].) But
for convective turbulence in a fluid heated from below all
the authors of previous studies [2,5,6] believe that / ed-
dies (at any /) will draw additional kinetic energy from
potential energy. If so, the spectrum Fy (k) has to de-
crease more slowly with increasing k& than the KO spec-
trum (2). However, the dimensional analysis yields only
the spectra (13). An explanation of this paradox follows
from the locality of dynamic interaction of eddies. Lo-
cality means that the main effect on the behavior of / ed-
dies (except of their sweeping in the turbulent velocity
field) is exerted by their interaction with the /' eddies of
the same order of size. (A proof of this statement will be
given in [9].) Stable and unstable stratifications differ
only in long-scale temperature gradients, which is not
essential because of interaction locality. Therefore, the
same physical processes, which conserve the entropy in
the inertial interval, are responsible for the turbulent be-
havior both for stable or unstable stratifications and for
free-convective turbulence (without temperature stratifi-
cation). Thus, in particular, the spectra (13) have to de-
scribe the convective turbulence in a box heated from
below [1].

To compare the observed frequency spectrum Frr(w)
(1) with the predicted momentum spectrum Frr(k) (13),
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one can use a sweeping relation in the reference system
where (v (r,t))=0 [10]:

F(w)=k?>F(k)/V, at k=w/V,. (20)

This looks like Taylor’s hypothesis of frozen turbulence
but contains ¥, =(|v(r,1)|% 2 instead of the mean veloc-
ity of flow, which equals zero. Sweeping relation (20)
means that the main contribution to the variations of
temperature and velocity signal (on a frequency @ in a
fixed point of a box) is made by sweeping of / eddies with
[=V,/w in the turbulent velocity field V,. We neglect in
(20) the shape variation of / eddies during their sweeping
time t,=I1/V,, which is possible for t(/)>t,. So, an
applicability parameter of the sweeping relation (20) is
EERY=1/t(DkV, K1, ]=1/k.

Using (15) we have E(k)=(kL) " or &(w)=(w/
comu,()y5 for convective turbulence which is interesting to
compare with &(k)=(kL.) "' for barotropic tur-
bulence. At F(k)xk ~7 Eq. (20) gives F(w) xw ¢,
a=n—2. Substituting nrr=%, we have Frr(w)
«w . In more detail, using (13) and (20) one can
obtain

FTT(CO)2

7/5 %
Wmy T
— y Omax™= 7. (2 1 )
w ext

Wmax

The scaling index @ =1 is in excellent agreement with
the experimental spectra (1). We think it means that the
cascade spectrum of free-convective turbulence with con-
stant entropy flux was observed in [1]. Additional sup-
port for this statement comes from a very simple and
clear picture of the phenomenon given above. Note, that
at Ra>7x10'" another power spectrum (with a=2.4)
arises at high frequencies [1]. It shows that turbulence at
high frequencies cannot be considered as a free tur-
bulence because of the mixing-zone effect. Another
viewpoint on the experimental spectra (1) was presented
by Castaing [11]. He uses the KO spectrum (2) for the
velocity field in barotropic turbulence, but does not con-
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sider that £(k) depends on k for free-convective tur-
bulence. Also, in [11] the theoretical plot for E (k/kg)
o« k2Fyy(k/ko) has been compared with the experimen-
tal plot for Fr7(w) without any explanation of the rela-
tion between these two different functions. In light of the
considerations presented above the approach of [11]
seems to me rather doubtful.
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