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Spectral Filtering in Neutron Interferometry
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We have demonstrated experimentally that the contrast lost, due to placing slabs of a material having
a neutron optical potential in one leg of a neutron interferometer, can be restored by spectral filtering of
the beams leaving the interferometer immediately before detection. The non-Gaussian spectral distribu-
tion of the neutrons traversing the interferometer in our experiment leads to an unexpected phase rever-
sal of the interferograms.

PACS numbers: 42.50.—p, 03.65.8z

The evolution of the wave function tit(r, t) of a freely
propagating neutron in a beam having a Gaussian spec-
tral distribution is described (in part) by the well-known
expression for the time-dependent longitudinal spatial
length [1]:

o,'(t) =cr„'(0)+ [ht/2ma, (0)]',
where m is the neutron mass. The minimum length
cr, (0) is related to the spectral width rst, of the linear su-

perposition of plane waves a(k)e' " "'
by the uncer-

tainty relation

o„(0)(xt,. ~ —, . (2)

For a spectral distribution which is precisely Gaussian,
the equality holds. If the wave packet traversing one leg
of a neutron interferometer is delayed (displaced in

space), say, by passage through a slab of material having
an optical potential V,p, relative to the wave packet
traversing the other leg of the interferometer, they will no
longer spatially overlap in the region of recombination,
and the interference contrast will disappear. For this to
occur, the relative displacement Al of the two wave pack-
ets need only be a small multiple of the minimum spatial
width a„(0) and not of the much larger width a (t) [2].
This fact was demonstrated in an experiment by Kaiser,
Werner, and George [3] designed to measure the longitu-
dinal coherence length of a neutron beam, and explained
in a straightforward way by Klein, Opat, and Hamilton
[4]. A detailed treatment of coherence phenomena in

neutron interferometry dealing with these matters is
given by Petrascheck [5].

In an actual neutron interferometry experiment there is
no a priori reason to believe that the spectral distribution
g(k) =~a(k)~ is precisely Gaussian, since it depends in

detail on the mosaic spread of the monochromator, the
collimators before and after the monochromator, and the
Bragg angles of the interferometer and the monochroma-
tor. We show here that the non-Gaussian nature of a real
neutron beam gives rise to some interesting and (initially)
unexpected eAects in neutron interferometry. Further-
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FIG. 1. Schematic diagram of a perfect Si crystal skew-
symmetric interferometer. The beam from the monochromator,
of nominal wavelength k =2.35 A, passes through a slit 8

mmx6 mm immediately in front of the interferometer. The
beam on path II passes through a series of bismuth slabs, which

spatially delay the neutron due to the positive optical potential
of Bi. The C3 beam is detected after reflecting from a Si
analyzer crystal. The interference contrast is measured by ro-
tating the aluminum phase flag in steps a about a vertical axis.

more, we have demonstrated experimentally, for the first
time, that the interference contrast lost due to relative
spatial displacement of the waves traversing the two legs
of the interferometer can be partially restored by spectral
filtering of the beams immediately before detection.

The experiment was carried out using the skew-
symmetric interferometer at beam port C at the Universi-

ty of Missouri Research Reactor. A schematic diagram
of the setup is shown in Fig. 1. Neutrons of mean wave-
length X =2.349 A from a pyrolytic graphite (002) mono-
chromator (20M =41') are incident upon the perfect sil-
icon crystal interferometer. The (220) lattice planes are
used in the interferometer (28tt =75.4'). The beam on
path II passes through a series of highly polished Bi met-
al slabs of total thickness D. Bismuth has negligible neu-
tron absorption, and a positive neutron-nuclear scattering
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length b =8.533 fm. We refer to these Bi slabs as the
sample. The neutron optical potential of a bismuth metal
sample of atom density 1V is [6]

V,~=2+6 Nb/m =6.24&&10 meV, (3)

which is small compared to the neutron's kinetic energy,
F. =14.7 meV. Thus, due to passage through the Bi sam-
ple, the neutron wave function on path II is displaced lon-
gitudinally by a small amount

~l = , DV.,/F—. ,

and experiences a phase shift

2;VbD —.

(4)

I:=C+8 g k cos 6@ dk,

I3 =A 8„I g(k)cos(n—e)dk,

(6)

where 2, 8, and C are constants characterizing the inter-
ferometer and the incident beam intensity. For a perfect
interferometer A=8 and C=2.7A, as discussed else-
where [7]. For the conditions of the experiment de-
scribed here 8/A =0.5, so that the maximum contrast
was about 50%. The fringe visibility, or contrast, (I—I;„)/(I,. „+I„,;„), is obtained from the mutual coher-
eACe funCtj[OA

p oo

1-(D,a) =(y,*(0)yi, (Wl)) =
i g(k)(cosine)dk,

The relative longitudinal displacement of the two wave
functions indicated schematically in Fig. 1 is greatly ex-
aggerated. For 1 cm of Bi, hi=212 4 and AP= —565
rad. The wave functions yi(r, r) and yi~(r, r) traversing
the paths I and II can be viewed as wave packets which
recombine in the fourth Si crystal slab near point d. The
two interfering beams leaving the interferometer, labeled
C2 and C3, are composed of linear combinations of yi
and y~~. We place a Bragg refIecting crystal in the C3
beam to select out of the spectral distribution g(k) a win-
dow iv(k) of Fourier components k. Because of the nar-
rower spectral width of the analyzed C3 beam, quantum
mechanics suggests that the corresponding wave packets
are spatially lengthened, and may again substantially
overlap and interfere, even though the two wave packets
traversing paths I and II were by no means spatially coin-
cident in the final recombining Si crystal of the inter-
ferometer. The signature of this eIIT'ect is the observed
recovery of lost contrast of the interferogram, which we
now discuss.

Neutrons leaving the interferometer are swapped back
and forth between the C2 and C3 beams in an oscillatory,
neutron-current-conserving manner as a function of the
phase diA'erence 6+=@~I—@~ for waves traveling on
path II relative to path I, such that
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FIG. 2. Measured spectral distribution g(k) in the C3 beam.

The parameters for the one-Gaussian fit are a =0.974,
=2.3456 A, cr~ =0.0120 A. The parameters for the two-
Gaussian fit are a~ =0.606, k~ =2.3366 A, o~~ =0.00798 A, and
a2 =0 793, k2 =2. .3524 A, ag2 =0.00800 A.

where A&& is the sum of I3.e(D) given by Eq. (5) and the
phase shift Bp(a) due to the phase flag. We explicitly
note the dependence of I on the thickness D of the Bi
slabs and the angle a of the phase Aag, since these are the
parameters which are varied in our experiment. The ex-
pressions (6), (7), and (g) can be obtained from general
arguments [g]. Since the mutual coherence function de-
pends only upon ~a(k)~, it is not possible to obtain in-

formation on the relative phasing of the Fourier com-
ponents making up the wave packets. For example, an
incoherent superposition of plane waves gives the same
result.

We show in Fig. 2 the results of a measurement of the
spectral distribution g(k) of the neutrons in the C3 beam,
obtained from a rocking curve of a nearly perfect Si(111)
crystal in the antiparallel (nondispersive) configuration.
The spectral acceptance width of this analyzer crystal is
7&10 A, corresponding to an eflective mosaic width of
0.02 . A single Gaussian with the parameters given in

the figure caption is a reasonable fit to the data. With a
given thickness of Bi in leg II of the interferometer, we
measure the contrast by rotating the phase Aag in steps e,
and compare the contrast of this interferogram with that
obtained with the Bi sample removed. We call the ratio
the relative contrast. The results are shown in Fig. 3(a).
The contrast falls ofI' with Bi thickness D as expected.
However, there is a long tail which we initially found to
be perplexing. For a Gaussian g(k), Eq. (8) suggests
that the relative contrast should be a Gaussian function
of D, namely, the magnitude of the oscillations of the mu-
tual coherence function [9]

=exp[ ——, (WbDoq) jcos( —NbDX+bili),
r(D, a)
f (0,0) (9)
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FIG. 3. (a) Plot of the relative contrast in the direct C3
beam and also in the analyzed C3 beam as a function of the
bismuth slab thickness, D. The widths of the spectral distribu-
tions g(k) of the direct C3 beam and the analyzed C3 beam are
hk/)j. =1.2% and AX/k =0.7%, respectively. The solid lines are
the result of calculating the mutual coherence function based
upon the measured spectral distribution (Fig. 2) and the mea-
sured Gaussian mosaic width of the pressed Si analyzer crystal.
(b) A plot of the phase diA'erence between the direct C2 beam
interferogram and the analyzed C3 beam interferogram.

where the Gaussian width o~ of the wavelength spectrum
is given by oq =2xak/k, and X is the mean wavelength.
This formula becomes slightly more complicated if beam
attenuation is included and the sample is not oriented
perpendicular to the beam [10]. One might suspect that
the long tail on the contrast curve is due to an undetected
sharp component of g(k). This turns out not to be the
case. The correct explanation comes from the fact that
small deviations from a Gaussian g(k) lead to important,
unanticipated, and measurable eAects. This can be seen

by supposing g(k) can be modeled by two closely spaced
Gaussian peaks, as shown in Fig. 2, namely,

g(k) =al exp[ —(k —kl) /2crlj

+a2exp[ —(k —k2)'/2cr22j .

For the simplest case of two Gaussians with equal heights
and widths, it is easy to show that the mutual coherence
function is

r(D, a) 2

r(0, 0)
=cos(NbDAX)exp[ ——, (NbDo~) j

x cos( NbDX+ 6I)), — (»)
where AX=(X2 —Xl)/2 and X=(El+f2)/2. Thus, when
NbD/t. X x/2, the contrast goes to zero, and then rises to
a secondary maximum before falling off' into the noise.
The solid curves in Fig. 3(a) are the result of evaluating
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FIG. 4. Interferograms obtained by rotating the phase flag
through small angles a, for the direct C2 beam and the ana-
lyzed C3 beam for various Ri slab thicknesses, D. Note that
these interferograms are 180' out of phase for D & 8 mm, but
are in phase for D =10 and 12 mm.

1 (D, a) using the two-Gaussian fit to the measured spec-
trum g(k) shown in Fig. 2.

We turn now to a discussion of the interferograms ob-
tained in the analyzed C3 beam, in which a pressed
Si(111) crystal with a mosaic width g(FWHM) =0.47'
was used as the analyzer in the antiparallel configuration.
The spectral width of this analyzed C3 beam was calcu-
lated to be AX/X =0.7%. Figure 4 displays a representa-
tive series of analyzed C3 beam interferograms in the
left-hand panels in comparison to the direct C2 beam in-

terferograms shown in the right-hand panels. Note the
change of the scale of the ordinate for increasing Bi slab
thicknesses. With the analyzer crystal in place, we did
not measure the direct C3 interferograms, but we know
from the data discussed above that the magnitude of the
interference oscillation in the direct C3 beam is the same
as the magnitude of the oscillations of the direct C2
beam; they are always 180 out of phase. The relative
contrast in the analyzed C3 beam persists to considerably
larger Bi thicknesses. For example, when the relative
contrast in the direct beams has fallen to zero near D =8
mm [Fig. 3(a)], the relative contrast of the analyzed C3
beam interferogram is still about 40%. The predicted
recovery of lost contrast by this wavelength filtering just
before detection is evident.
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In a manner anticipated from the relative phasing of
the direct C2 and C3 interferograms, the relative phases
of the analyzed C3 interferograms and the direct C2 in-
terferograms are also 180 for Bi sample thicknesses
D =0 up to = 8 mm. However, in the region D = 8 to
= 16 mm, the phase of the analyzed C3 interferogram
relative to the direct C2 interferogram is 0 . For D & 16
mm, these two interferograms are again 180' out of
phase. A summary of these relative phase data is shown
in Fig. 3 (b). Initially, this switching of the relative
phases of these interferograms was surprising. The origin
of this efI'ect comes from the small deviations of the direct
C2 and C3 spectral distributions g(k) from a perfect
Gaussian, and can be understood from the expression for
the mutual coherence function given in Eq. (11). When
the value of NbDAX passes through rr/2, 3rr/2, etc. , the
phase of the direct beam interferograms given by Eqs. (6)
and (7) abruptly changes by 180' due to the factor
cos(NbDAX) in I (D, cr). For the analyzed C3 beam the
spectral distribution is accurately represented by a single
(narrower) Gaussian [i.e., AX=0 in Eq. (11)]. Thus, a
comparison of the relative phase of the analyzed C3 beam
interferogram with the direct C2 beam interferogram
provides a subtle, but direct signature of the non-
Gaussian nature of the spectral distribution of the beams
traversing the interferometer.

Although our method of modeling small deviations of
g(k) from a Gaussian by two closely spaced Gaussians is
ad hoc, we believe that the essential physics of the phase
switching and contrast modulations shown in Fig. 3 is
captured by this model. These experiments represent the
first observation of this eA'ect, and the first observation of
recovering contrast by spectral filtering immediately be-
fore detection in matter wave interferometry.
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