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Picosecond Quantum-Beat Spectroscopy of Bound Excitons in CdS
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We report the first observation of quantum beats in the resonance fluorescence of a bound exciton in a
semiconductor, the ionized-donor exciton complex in CdS. Measurements of the polarization behavior
and magnetic-field dependence of the beats permitted a detailed investigation of strain eA'ects and
magneto-optical parameters of the states. From the damping of the beats, coherence times of the order
of several hundreds of picoseconds are deduced. For the neutral-donor and -acceptor bound exciton
states, very rapid dephasing with coherence times of the order of 20 ps is found.

PACS numbers: 42.50.Md, 71.35.+z, 78.20.Ls, 78.47.+p

Phase relaxation is of fundamental importance for the
understanding of the dynamical behavior of electronic
states. In solids, phase relaxation times in the picosecond
and subpicosecond regime require high time resolution,
and therefore only nonlinear optical techniques, like pho-
ton echo [1,2], transient absorption correlation [3], or
four-wave mixing [4], hitherto allowed exploration of the
dephasing of continuum electron-hole states and excitons
in various semiconductor systems. However, an alterna-
tive, linear method to investigate dephasing of quantum
states in solids is quantum-beat spectroscopy. This tech-
nique has widely been used in studies of atoms and mole-
cules [5], but most recently, by studying the resonance
fluorescence of free exciton states in AgBr [6], it was
demonstrated to be applicable for solids too. In this tech-
nique, a set of nearly degenerate electronic states, e.g. ,
split by a magnetic field, is excited coherently by a short
laser pulse with a spectral width larger than the energy
splitting of the levels. The beats show up as oscillations
in the time-dependent resonance fluorescence from these
states. From the damping of the beats, the coherence
time r„h (also called dephasing time T2) of the states
can be deduced, which is defined through I/r„h =2//T~

+1/T2, where T~ and Tz denote the energy relaxation
and pure dephasing times. The beating frequencies are
directly related to the energy splitting of the states, which
can be varied by the magnetic field, allowing a deter-
mination of important magneto-optical parameters like
electron and hole g factors. A particular advantage of
quantum beats in spontaneous Auorescence is that they
are not afI'ected at all by an inhomogeneous broadening
of the states. Therefore, small splittings can be measured
that are masked in the spectrum and not accessible to
conventional spectroscopy. From a fundamental point of
view, beats in spontaneous Auorescence originating from
the superposition of wave functions have to be dis-
tinguished from beating phenomena observed in investi-
gations of exciton states using nonlinear four-wave mix-

ing [7,8], as these are due to interference of coherent po-
larizations oscillating at diAerent frequencies.

In order to be able to use the full potential of
quantum-beat spectroscopy, the coherence time of the
states investigated should be long, corresponding to a

small homogeneous linewidth I h, =26/z„h. In semi-
conductors, for bound-exciton transitions, in principle,
long coherence times can be expected, as, due to localiza-
tion, the number of relaxation channels for these states is

greatly reduced. Indeed, indications of coherence times
of the order of several hundreds of picoseconds have been
found in previous studies of optical orientation of bound-
exciton transitions in various II-VI compounds like CdS
[9], and also for disorder-localized states in CdS/CdSe
solid solutions at low temperature [2] by photon-echo ex-
periments.

In this paper we report the first observation of quantum
beats from bound exciton states in a semiconductor. As a
model system, we have investigated the bound-exciton
transitions I~, I2, and I3 in CdS, the electronic con-
figurations of which are well known from conventional
spectroscopy [10]. These transitions are due to I 9XI 7

A-exciton complexes involving a neutral acceptor (A,X),
a neutral donor (D,X), and a charged donor (D+,X),
respectively. In the case of the I3 transition, in the pres-
ence of a magnetic field pronounced quantum beats are
observed that decay with a coherence time of about 300
ps. By using fields up to 3.5 T, they can be exploited to
determine electron and hole g factors of the (D+,X)
complex. For the other bound-exciton transitions, de-
phasing times are found to be extremely short, not per-
mitting the observation of beats for these states within
the available time resolution.

In our experimental setup (for details see [11])excita-
tion is accomplished by 5-8-ps pulses from a dye laser,
operated with coumarin 102 and synchronously pumped
by a mode-locked frequency-tripled Nd-doped yttrium
lithium flouride laser system. The scattered light is ana-
lyzed by means of a 1-m double monochromator having
subtractive dispersion to compensate the light transit-
time spread produced by a single grating (residual time
broadening (5 ps). This setup allowed us to achieve
transform-limited performance down to this time range,
the actual time resolution being limited by the time
response of the photodetectors used (20 ps FWHM for a
microchannel-plate photomultiplier and 10 ps for a syn-
chroscan steak camera).

The CdS sample was of cylindrical shape with the crys-
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ing levels or by additional sub-band-gap light irradiation.
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FIG. 4. Magnetic-field dependence of the energy splitting
between exciton states @~,C&q of the (D+,X) complex for e =0'
as obtained from analyzing the quantum-beat signals. Trian-
gles: experimental data. Solid line: fit obtained by numerical
diagonalization of the Zeeman and strain Hamiltonian using
the parameters given in the figure.

found for the free A-exciton state [[S],we conclude that
the binding of the exciton to the ionized donor does not
change the electronic wave functions very much. To sub-
stantiate this conclusion, measurements of the other
magneto-optical parameters are under way.

The fast dephasing observed for I
~

and I2 may be relat-
ed to the much higher concentration of the neutral donor
and acceptor species compared with that of the ionized
donors in our sample. From the strength of the l~ and I2
LO replica relative to that of I3 under resonant excitation
a corresponding concentration ratio of at least 10 is sug-
gested. At this rather high doping level, one expects fast
energy-transfer processes to occur between the centers by
which the coherence may be eAectively destroyed. This is
supported by the time dependence of the I2 resonance
Auorescence, where a pronounced nonexponential behav-
ior is found, characteristic for such processes. To clarify
this point, experiments are planned in which the neutral-
donor concentration will be varied either by diA'erent dop-
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