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Semiclassical Dynamics of Chaotic Motion: Unexpected Long-Time Accuracy
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Chaos introduces essential complications into semiclassical mechanics and the conventional wisdom
maintains that the semiclassical time-dependent Green s function fails to describe the quantum dynam-
ics once the underlying chaos has had time to develop much finer structure than a quantum cell (h). We
develop a method to evaluate the semiclassical approximation and test it for the first time under these
circumstances. The comparison of the quantum and semiclassical dynamics of the stadium billiard
shows remarkable agreement despite the very intricate underlying classical dynamics.

PACS numbers: 03.65.Sq, 03.40.Kf, 05.45.+b

Semiclassical mechanics has a long, illustrious history
of providing both physical insight and approximations to
a wide array of quantum-mechanical problems. Being a
wave mechanics based solely on input of a classical na-

ture, it focuses all the attention on the properties of a
quantum system's classical analog. If the underlying
classical dynamics are integrable, the theory is fairly well

understood. On the other hand, if the underlying dynam-
ics are chaotic, a number of basic difhculties exist.
Indeed, for this situation it was recognized many years
ago during the period of the "old quantum theory" that
essential complications arose in attempting to approxi-
mate stationary quantum solutions [1]. Recently, a great
deal of research has been directed toward resolving these
problems and yet surprisingly, prior to this work the fun
damental semiclassical approximation (by which we

mean the semiclassical Green s function in the time
domain) has never truly been tested for a chaotic
system —its validity is quite unknown. One reason for
this gap in understanding is a deep rooted, intuitive pessi-
mism about the approximation s applicability since the
nonzero size of Planck's constant must be responsible for
some kind of smoothing over the intricate complexity that
is the essence of chaotic dynamics. This intuition would

suggest that phase-space structures on a scale much finer

e(q;t) = dq'G(q, q';t)q (q';0) . (2)

The fundamental approximation is to replace G(q, q';t)
with a semiclassical version, G„(q,q';t) [2],

than h cannot be relevant. A typical argument stresses,
for example, that it is easy to find a perturbation which,
though barely affecting the quantum system, radically
alters each of the classical trajectories —the correspon-
dence principle is failing. A further explanation of this

gap lies in the technical difticulty of just evaluating the
formal semiclassical expression. In this Letter, we shall
outline a method that we have developed for performing
the evaluation and demonstrate the astonishingly quanti-
tative agreement existing between the quantum and semi-
classical dynamics for a chaotic system, the stadium bil-
liard. This agreement extends well past the time when
classical structure far finer than a quantum cell is put
into the semiclassical mechanics.

Our starting point is to consider the quantum-me-
chanical time-dependent Green's function in a coordinate
representation. It is denoted

G(q, q';t) =&qje '"' "~q'&,
J%

where H is a quantum Hamiltonian. The propagation of
an initial state @(q;0) is then given as

G(q, q';t) = G„(q,q';t) = 1

2Zl 6

' d/2

g det
r)'S&(q, q';t)

Bq t)q

iS, (q, q';t)
exp

l 2'Vg

2
(3)

In this expression, the sum over j is for all trajectories
connecting q' to q in time t, d is the number of degrees of
freedom, the prefactor involving the determinant is play-
ing the role of the square root of a classical probability,
and the phase is determined by the classical action
S~(q, q';t) and the count of conjugate points (like focal
points) vl. Sl(q, q';t) is specified by the time integral of
the Lagrangian L,

S, (q, q';t) =„dt'J
=„,dt'[p(t') q(t') —H(p(t'), q(t'))], (4)

along the jth classical path (H is the classical Hamiltoni-
an).

Equation (3) has been referred to here as the funda-
mental approximation because it is the starting point of
all other forms of semiclassical theory for chaotic sys-
tems. The most important variants are periodic-orbit
theories, as initiated and embodied in the work of Gutz-
willer [3]. They extract spectral information from the
knowledge of the classical periodic orbits. Attempts to
reproduce detailed spectra have proven dificult and have
met with only limited success [4]. Justification of these
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techniques is still unclear [5] and must ultimately derive
from the validity of the dynamical approximation.

Although Eq. (3) formally gives the semiclassical dy-
namics, as it stands it is prohibitively complicated to
calculate —i.e., trajectories of all energies and complexity
must be incorporated. In addition, G„(q,q';t) suffers
from a proliferation of singularities in the determinant
prefactor due to the coalescence of stationary phase
points associated with caustics (a generalization of classi-
cal turning points) [6]. Our approach to avoiding these
difficulties begins with applying G„(q,q';t) to the propa-
gation of initially localized wave packets. In this way, the
singularities are avoided [7] and only trajectories within
some energy window will be relevant, thus eliminating the
infinitely complicated orbits. This does not fully solve the
technical problem since there is still an uncountable num-
ber of quite complicated, contributing orbits. To further
simplify the task at hand, we shall concentrate on correla-
tion functions of the type

C., (r) =(e.(0)~@,(r))

dq dq'e.*(q;0)G (q, q';r )eg (q';0), (5)

where @,(q;0) and @b(q;0) are wave packets of the form

e(q;0) =(ircr ) " exp — + ' (q qo)
ipo

6

The centroid, (qo, po), determines the region of "phase
space" around which the wave packet is localized. Note
that the correlation functions entail no loss of generality
since all the information contained in G(q, q';t) is also
contained in the full set of possible C,b(t)

The first task is to identify all those trajectories that
will contribute to C, (rb) within the time interval of in-

terest. The trajectories necessarily begin in the neighbor-
hood of the centroid of @b(0), (qo, pp)i„and finish near
the centroid of @,(0), (qo, po), . The procedure for locat-
ing trajectories is tantamount to solving the problem of
calculating a classical version of C,b(t) where localized
classical densities of phase points are used in lieu of wave
packets. The details will be published elsewhere [8] and
here we just roughly describe the main idea. Illustrated
schematically in Fig. 1 are the principle features of chaos
upon which we rely. Basically, any initial density of
phase points being propagated preserves its volume
(Liouville's theorem), and the phase space has a local hy-
perbolic structure, meaning that nearby trajectories are
either separating or approaching each other exponential-
ly fast. An initially smooth, localized density rapidly
evolves and becomes like the filamentary strand pictured.
Assuming the accessible phase space is bounded, the fila-
mentary density rapidly folds over upon itself with the
number of "folds" proliferating exponentially in time.
The intersection of the various branches of the filamenta-

FIG. l. A schematic illustration of the hyperbolic structure
of phase space. The initial swarm of trajectories, the black disk,
exponentially stretches apart as time evolves from upper left to
lower right. The gray disks indicate the initial swarm.

C,b(r) =g(+.(0)~+b(r))„. (7)

Technically speaking, this is a sum of contributions over
the numerous heteroclinic excursions. The result depends
only on the parameters describing each excursion and the
local stability of the dynamics.

A good testing ground of the semiclassical dynamics is

ry density with the neighborhood of (qo, po) identifies the
end points of all the trajectories contributing to C,b(t).

The trajectories are naturally grouped into subsets la-
beled by the branch in which their end points reside. All
the trajectories within a particular subset are exceedingly
similar in their properties and it suffices to locate a single
member within a branch in order to understand the be-
havior of all the members of a subset. For a system with
two degrees of freedom, it is a simple matter to locate the
one reference trajectory per subset referred to as being
"heteroclinic" to the classical points (qo, pp)b and (qo,
po), [8]. With these heteroclinic orbits, the characteriza-
tion of a subset follows by linearizing the dynamics in

their neighborhoods. The linearization amounts to Tay-
lor expanding the action S, (q, q';t ) in q and q' to quadra-
tic order and evaluating the prefactor (which is locally
constant); see [9] for a complete summary. In this way,
only elementary Gaussian integrals (which are done
analytically) are encountered in evaluating Eq. (5) semi-
classically. Although, the linearized SJ(q, q';t) is valid
only in a small neighborhood around its reference trajec-
tory, the integration with @,(q;0) serves very effectively
to cut off this domain. The expression for C,b(r) is

reduced to a sum over contributions, one from each
subset y,
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provided by the well studied quantized stadium billiard.
The classical stadium is proven chaotic (is highly unsta-
ble) and there is every reason to believe that the semiclas-
sical dynamics should function in a way typical of many
chaotic systems. If a localized wave packet of the form
given in Eq. (6) is propagated, it will very rapidly spread
to fill the entire stadium. For example, in Fig. 2 are the
contours of the real part of a wave packet initially located
at the center of the stadium moving toward the right.
Scaling the time for the wave packet's horizontal tra-
versal of the stadium to be t =1, the propagated wave
function is shown for t =0,1,2,6. By t =2, the time of the
shortest unstable periodic orbit, the wave function has al-
ready passed the "Ehrenfest time, " i.e., it is barely recog-
nizable as having originated from a localized state. Any
obvious quantum-classical correspondence has already
passed.

To give a quantitative comparison, consider the auto-
correlation function, Ct, t, (t) =(@b(0) ~@t,(t)), where
C&b(0) is pictured in Fig. 2 at t =0. The gross behavior of
Ct, t, (t) is easily understood. Its magnitude will begin at 1

and drop to nearly 0 as the propagated wave packet be-
gins to move away. It will remain nearly 0 until t =2
when parts of the wave packet will have had the time to
travel back and forth across the stadium and generate
partial recurrences. Soon thereafter the quantum pro-
pagated state seems to be everywhere and Cbt, (t) will set-
tle into some fluctuating pattern. This is borne out in

Fig. 3(a) by the dashed (exact quantum) curve. The
surprise is that every detail of the fluctuating quantum
behavior is captured by the semiclassical prediction which
is superposed on the same figure as a solid curve. In per-
forming the heteroclinic (homoclinic for autocorrelation
functions) summation to obtain the semiclassical predic-
tion, about a dozen orbits were contributing at any given
time near t =2. By t =4, several hundred were contrib-
uting, and by t =5 or 6, more than 30000 heteroclinic
terms were needed in the summation. To picture the
dynamical complexity, consider the bottom right image of
Fig. 1 which shows 7 branches slicing through the gray
disk. To attain t =5 or 6, one would have to draw more
than 30000 branches fitting in the gray disk. Other than
for the beginning of the first recurrence, no individual or-
bit comes anywhere close to generating the magnitudes of
the recurrences seen; all of the terms are necessary. In
Fig. 3(b), just the real part of Cbb(t) is shown on an ex-
panded scale to display better the quality of agreement.
We have checked other cases, including examples with
far fewer nodes, i.e., lower energies (and cross correla-
tions, a&b), and found similar agreement.

Because our method approximates G„(q,q';t), the al-
ready quantitative results could only improve if a better
evaluation of the semiclassical dynamics were available.
Thus, the intricate dynamics of chaotic motion do not
have the strong adverse eAect on the fundamental semi-
classical approximation that had been believed [10].
Nearly all the thousands of branches of trajectories are
individually generating accurate contributions to C,b(t);
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FIG. 2. Evolution of a localized wave packet in the stadium
billiard. The initial Gaussian pictured in the first frame is
chosen so that 30 wavelengths stretch across the horizontal axis.

FIG. 3. The comparison of an exact quantum and a semi-
classical calculation of an autocorrelation function. The quan-
tum curves are dashed and the semiclassical are solid. (a) The
absolute magnitude of Cbt, (t). (b) A blowup of the real part of
C66 (t).
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FIG. 4. The time-energy Fourier transform of Cbb(t) and
spectrum of pb. The transform is cut oA' in time abruptly at
t =8 beyond which the number of heteroclinic orbits required to
evaluate Eq. (7) becomes impractical. For display only the
center one-third region of the pb spectrum is shown.

nearby branches do not compromise the accuracy of a
given branch.

The overlap intensity of pb with the eigenstates may be
re 4obtained by Fourier transforming the dynamics. Figure

shows the comparison of the transformed semiclassics
with the exact quantum intensity spectrum. The max-
imum peak occurs near the 1200th eigenvalue. Remark-
ably, the semiclassical theory is reproducing the quantum
fine structure to the scale of 2 to 3 mean spacings. The
limit of resolution results from the present practical limit
of performing the classical dynamics and not by any
failure of the semiclassics. The ability to resolve struc-
ture on the scale of an average spacing or less has been a
major goal since efforts began on understanding the semi-
classical dynamics of chaos.

As quantitative as the results are, clearly there are
Iquantum effects not contained tn G„(q,q;t). As an ex-

ample, consider the branches for which our technique of
evaluating Eq. (7) must break down, i.e., those folded
within the overlap region. In the stadium, a fold develops
when one of the local trajectories strikes the joint be-
tween the semicircular end cap and the straight edge.
These folds generate sources of diffraction and that is cer-
tainly left out of Eq. (3). Their contributions to the

quan um met m mechanics must show up, but it is plausible that
llnot all C,b(t) are equally affected, with most being we

behaved.
There are several natural continuations of this work

that we are pursuing. Examples include (i) understand-
ing better the domain of time and 6 in which semiclassi-
cal arguments are valid, (ii) searching for ways of sum-
marizing the classical information in order to simplify
evaluating the heteroclinic summation, (iii) investigating
the nature of "chaotic" eigenfunctions incorporating the
new-found access to long-time dynamics, (iv) reexamin-
ing Gutzwiller periodic-orbit theory for possible correc-
tions and new insight, and (v) further development of the
semiclassical techniques for application to physical sys-
tems.
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by the National Science Foundation under Grant No.
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