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We discuss the two time-interval sequences which play a crucial role in studies of escape times in bi-
stable systems driven by periodic functions embedded in noise. We demonstrate that the probability
density of escape times for one of the sequences exhibits all the substantive features of experimental in-
terspike interval histograms recorded from real, periodically forced sensory neurons. Our analysis relies
on linking this interval sequence to the firing-reset mechanism of real neurons, and illustrates the impor-
tance of the noise, without which the substantive features cannot exist, for the transmission of sensory
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information.

PACS numbers: 87.22.Jb, 02.50.+s, 42.66.Ew

It has been well known for decades that a major com-
ponent of sensory information is transmitted to the brain
using a code based on the time intervals between firings
of neurons, that is, action potentials or spikes [1,2].
Moreover, statistical analyses of experimentally obtained
spike trains have concluded that the time intervals con-
tain a significant random component [3]. Exactly how
the sensory information is encoded and how this process
is affected by noise— whether the noise simply obscures it
by introducing random interval errors, or whether it plays
a deeper role—is, however, presently not clear. A useful
and widely used ensemble average of neural firing data is
the interspike interval histogram (ISIH) in which the
time intervals between successive spikes are assembled
into a histogram. In this paper, we are interested in the
properties of these ISIH’s when the stimulus to a particu-
lar sensory modality is a periodic function of time. We
reproduce in Fig. 1 two such histograms, obtained 23
years apart: the first from older experiments on single au-
ditory nerve fibers of monkeys [4], shown in Fig. 1(a),
and the second from recent experiments on single neu-
trons in the primary visual cortex of a cat [5], shown in
Fig. 1(b). The histograms from these elegant experi-
ments depict striking sequences of decaying peaks. The
similarity is remarkable, even though the cat data were
obtained from a neuron located within the visual cortex,
in contrast to the monkey data, which were obtained from
a nerve fiber much closer to the transducer (the ear), sug-
gesting that these detailed patterns may play an essential
role in neural information transfer. Two features of these
data are notable: First, the modes are located at integer
multiples of the stimulus period, and second, the mode
amplitudes decay rapidly, approximately exponentially,
as shown by the inset in Fig. 1(a).

We take a reductionist’s view of these data; that is, our
object here will not be to create a better or more detailed
neuron model, but rather to discover the simplest possible
physical mechanism which can capture the dominant
features of the aforementioned ISIH’s. Similar ap-
proaches have recently been used to address other ques-
tions in biology, for example, that of oscillator synchroni-
zation [6]. We take our initial clues from Landahl,
McCulloch, and Pitts [7], who first modeled neurons with
stochastically driven two-state processes. Since we are
concerned with periodically stimulated neurons, we con-
sider the properties of a general bistable system driven by
a sinusoidal function with added noise. For simplicity, we
consider only the limit of large damping:

_dux)
dx

where U(x) is a double-well potential, and £(¢) is a noise
which we take to be white and Gaussian with zero mean.
Under the influence of the noise alone, the system
switches between its two wells, say, A and B, at random
times. For m > 0, the switching times become, to some
degree, correlated with the periodic function. This results
from the fact that the transition probabilities become
periodically modulated: a general process which has been
studied under the name stochastic resonance [8]. We are
interested here only in the time intervals of the transitions
between wells, not in the detailed motion within the wells.
Under these conditions, the dynamics of Eq. (1) can be
replaced with a “two-state” dynamics, realizable, for ex-
ample, by a Schmitt trigger [9]. For symmetric double
wells, restricted to the two-state dynamics, the only pa-
rameters which govern the response are the height of the
potential barrier separating the wells and the locations of
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FIG. 1. (a) An experimental ISIH obtained from a single
auditory nerve fiber of a squirrel monkey with a sinusoidal 80-
dB sound-pressure-level stimulus of period 79=1.66 ms applied
at the ear. Note the modes at integer multiples of 7. Inset:
The same data replotted on a semilogarithmic scale. Repro-
duced with permission from Ref. [4]. (b) A series of 26 over-
laid ISIH plots measured on the primary visual cortex of a cat
for 26 different stimulus periods. The time scale of each ISIH
was normalized by its stimulus period showing the modes locat-
ed at all integer multiples of 7o for the set of all periods.
Reproduced with permission from Ref. [5].

the stable states. The response of such a two-state system
is shown in Fig. 2.

Only two sequences of consecutive time-interval mea-
surements can be obtained, as shown by the upper and
lower sets of labels, T;, in Fig. 2. The ISIH’s assembled
from the two sequences are different. The top sequence
measures the escape time from well B, a process for
which a recent approximate theory has been developed
[10]. This process, which we shall call the ABBA pro-
cess, results in an ISIH with modes located at odd-
integer multiples of To/2, where T is the period of the
sine function [11]. By contrast, the sequence defined by
the bottom set of labels, which we call the ABAB se-
quence, and for which the theory of Ref. [10] has not yet
been adapted, results in an ISIH with modes located at
all integer multiples of Ty. An example of ISIH, mea-
sured on our Schmitt trigger for the ABAB sequence, is
shown in Fig. 3(a). The similarities between this ISTH
and those shown in Fig. 1 are clear. Assuming only that

T, T, T
B B B

Xo

o
b L

FIG. 2. An example output from a two-state device driven by
noise plus a weak sinusoidal function. The two stable states at
=+ xo are labeled 4 and B. The upper set of time labels indi-
cates the ABBA sequence. The lower set indicates the ABAB
sequence. These are the only two possible consecutive time-
interval sequences available to a two-state system from which to
construct ISIH’s.

time

actual neurons do behave in some respects as two-state
systems, a supposition for which much evidence has been
accumulated [3], one must conclude that an 4BAB-type
process underlies the physiological ISIH’s. For the same
conditions, we also measured the ISIH for the ABBA se-
quence, as depicted in the inset of Fig. 3(a). Clearly this
sequence results in a phase-shifted set of peaks located at
the odd-integer multiples of To/2. That only the ABAB
sequence is observed in experiments on actual neurons is
significant. It tells us that an additional event—a reset
mechanism— must exist between every pair of spikes.
We identify these BA events with the well-known repolar-
ization of the neuron membrane which occurs some time
after the depolarizing upstroke of an action potential [3]
and which may or may not be automatic even in the ab-
sence of noise [12]. For example, it is known from nu-
merical studies of Hodgkin-Huxley-type equations that
bistability in the firing dynamics is possible [13], due in
part to the N-shaped current-voltage characteristic, quali-
tatively the same as dU/dx in Eq. (1), of excitable cells.

In addition, the experimental ISIH’s of Fig. 1 show
modal decay rates which are, to the precision of the re-
ported data, and except for the first few peaks, indistin-
guishable from exponential functions [14], ie., Amax
acexp(—AT). This suggests that the spike rates, and
possibly also the reset mechanisms, are governed by rate
processes. Figure 3(b) shows the 4BAB sequence data
plotted on a semilogarithmic scale with the dashed line
indicating the exponential decay law. In our simulations,
the decay constant A depends strongly on both stimulus,
m, and noise, (§2>, intensities, and over certain ranges
these quantities seem to play interchangeable roles; that
is, we found that Accexp(Bm) with fixed (£2), and
L exp(y(&?)) with fixed m (B,y positive constants). In
the biological experiments, the noise intensity cannot be
externally controlled; however, the results of the auditory
nerve experiments cited in Ref. [4] indicate a similar
dependence on stimulus intensity.

Many experiments [15-18] have yielded ISIH’s with
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FIG. 3. (a) An ISIH measured on the Schmitt trigger for
the ABAB sequence with the same To (=1.66 ms) as in Fig.
1(a). Note that the modes lie at all integer multiples of T as
indicated by the labels along the upper horizontal axis. Inset:
An ISIH measured for the ABBA sequence but with otherwise
identical conditions. Note the mode locations at odd-integer
multiples of To/2. (b) The same data as in (a) (4BAB se-
quence) plotted on a semilogarithmic scale.

some similarity to those of Refs. [4] and [5]. The present
results demonstrate that the dominant features of the
multimodal ISIH’s measured on periodically stimulated
neurons of the auditory and visual systems can be under-
stood, in the simplest view, as arising from a periodically
modulated two-state system with added noise.

Our model is similar in spirit to an early stochastic
model proposed by Gerstein and Mandelbrot [19]1 (GM),
who viewed the firing events as triggered by threshold
crossings of the membrane potential undergoing a biased
random walk, driven by excitatory and inhibitory post-
synaptic potentials. Later, Geisler and Goldberg [20]
proposed an exponential function activated by a Gauss-
ian, colored (i.e., finite bandwidth) noise crossing a single
threshold. An early review of such models was provided
by Fienberg [21]. A more recent review is given by
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Tuckwell [3]. The emphasis of all these models has been
on the spontaneous, i.e., unstimulated, behavior which re-
sults in unimodal ISIH’s. GM did, however, briefly in-
vestigate their model numerically with a periodically
modulated drift and were thus able to generate a mul-
timodal ISIH [22]. None of these, however, have at-
tempted to explain the role of the two sequences in deter-
mining the locations of the modes of the ISIH’s or their
approximately exponential decay.

In contrast, we have demonstrated that these two
essential features can be reproduced by an elementary
two-state device, a Schmitt trigger, stimulated by a
periodic function with additive Gaussian noise. We can
accurately reproduce data such as that of Ref. [4], by ad-
justing only one parameter: either the noise or the
stimulus intensity, given that the other lies within some
range not very different from the height of the potential
barrier. Moreover, the sequence and exponential decay
behaviors are robust to radical changes in the bistable po-
tential. For example, we have observed that upon substi-
tuting a soft potential [lim,_.oU(x)<x] for the
infinitely hard Schmitt-trigger potential, the resulting
ISIH’s differ only in some details, such as the width of
the peaks, the shape of the minima, and the number of
short-interval events due to multiple-barrier crossings
near the metastable state. The latter produce a peak near
the origin similar to those seen in Fig. 1(b), and in Rose
et al. [4] at lower frequencies, and can thus be linked to
spontaneous firings. Scatter plots of one time interval
versus the following one were found to exhibit much the
same structure as reported in Ref. [5] except for small
asymmetries not reproducible by our model. It remains
to be seen whether our model can account for other
statistics such as the pulse number distributions analyzed
in Ref. [18].

Finally, we remark that the distinctive mode sequences,
observed both in the experiments and in our simulations,
cannot exist in the absence of noise. Supposing, as seems
reasonable, that the brain interprets the mode sequence
and decay across arrays of neurons in order to obtain in-
formation on the frequency and intensity of the stimulus,
one comes to the inescapable conclusion that the noise
plays an essential role in this process. This work comple-
ments the recent and growing body of literature wherein
various aspects of noise in neuronal processes have been
addressed [3,23-25].
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