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Model Calculation of Size Effects in Orbital Magnetism
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Size effects in the orbital magnetic susceptibility of small metallic systems are investigated by consid-
ering some simple model systems. The atomlike properties at low temperatures gradually evolve towards
a diamagnetism close to the bulk Landau value at high temperatures, with only small size-dependent de-
viations. For k&T smaller than the energy-level spacing, the susceptibility of an ensemble average of
different particles is expected to show orbital paramagnetism. This mechanism is proposed as an ex-
planation for the observations of Kimura and Bandow.

PACS numbers: 75.20.En, 35.20.My, 36.40.+d

Under the influence of a magnetic field the electrons in

a metal are constrained to move on cyclotron orbits. This
motion results in a small magnetic response, known as
Landau diamagnetism. What happens when we decrease
the size of the system or, alternatively, lower the field to
the point where the cyclotron orbit radius R, grows larger
than the size of the system I?

Since the appearance of Landau's original paper [1],
many workers have considered this question (e.g. , see
Denton [21 and references therein). In general, bound-
aries were found to have a small effect in the range of va-
lidity of the calculations (large quantum numbers), but
the results all differ from Landau's result by at least a
numerical factor. Landau diamagnetism seems to sur-
vive, at least qualitatively, for L/R, ~ 0, and apparently
does not hinge on the existence of Landau orbits. More
recently, both Robnik [3] and Altshuler, Gefen, and Imry
(AGI) [4] predicted a paramagnetic correction for de-
creasing L. Speculations of giant diamagnetism [5], but
also giant paramagnetism [6], have appeared. Here, we
study the limit I./R, =O by explicit calculation of the
simplest possible models by which it is possible to demon-
strate many effects, often predicted by more complicated
models. We distinguish three kinds of size eA'ects: (a)
At temperatures T large compared to the energy-level
spacing A/k~ a susceptibility close to the Landau value is
obtained (deviations only a few percent) in both the de-
generate and nondegenerate limits, even for just a few
electrons in the box. The deviations are of the order of
the surface corrections predicted by Robnik [3]. (b) For
kBT/6 ( 1 there is only a lower bound to the susceptibili-
ty, set by the diamagnetic term. This lower bound is
realized in spherical closed-shell clusters, as predicted by
Kresin [7]. A large paramagnetism is found in systems
with (near-)degenerate levels at the Fermi energy EF.
(c) Ensemble averages of particles with a distribution in
size or structure can show a large orbital paramagnetism.
This was also found for the diA'usive regime by AGI [4].
We propose that this new size effect may describe the
hitherto unexplained paramagnetism in small Mg parti-
cles reported by Kimura and Bandow [81.

The Hamiltonian of any system is modified by a mag-

netic field according to
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with 0 the volume of the system. Note that g, & increases
for decreasing energy-level separation, i.e. , for increasing
system size. The last term in (1) produces Larmor
diamagnetism in atoms, and is proportional to the square
of the wave-function radius, and thus is also large for
larger systems. The two large contributions approximate-
ly cancel, as will be shown below.

The simple model system that we will consider first is a
sphere with infinite potential walls. The energy levels in a
magnetic field are given by E„I (8) =E„~(0)+my&8
+a„l 8; m are the X, eigenvalues and a„i 8 is the ex-
pectation value of the last term in (1). Inserting this en-
ergy in the grand canonical partition function, one can
derive an expression [9] for the susceptibility at 8 =0,

SPYZf. (I-f.)
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The first term in (3) is Curie-like at low temperatures;
the last term is the temperature-independent diamagne-
tism. The factors fo and 1 fo describe the temper-—

iV =So+ BXz+ 8 r
2m, 8m,

Here we have taken the field along the z axis, the sym-
metric gauge for the vector potential A=

2 Bxr, and
r& =x +y . We ignore the spin of the electrons
throughout. For high fields the last two terms lead to
Landau quantization of the energy spectrum. Here, how-
ever, we are interested in the low-field limit so that these
terms can be considered as small perturbations. The term
in the z component of the angular momentum X, pro-
duces paramagnetism: For a spherical system L, is diag-
onal and we have a Zeeman splitting of the degenerate
levels, resulting in a Curie-like paramagnetic susceptibili-
ty. In general, X, is not diagonal, and the term is treated
in second-order perturbation, known as van Vleck para-
magnetism,
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FIG. 4. The orbital susceptibility for a rectangular box at
T=O as a function of the number of particles in the box. The
diamagnetic and paramagnetic contributions approximately
cancel. Here the ratio of sizes along the x and y axes is L~/
Lq =41.1. The units for g are poe'/m, L~.

the spherical system scales roughly with this factor. The
underlying idea is that the scale for smoothing out the
level-density fluctuations is not 6,, but E„+]~

—E„ I.
A realistic model for small particles will in general not

be spherical. In order to illustrate that the results are not
very sensitive to the special symmetry of the problem, we
present a similar calculation for a rectangular box (some
details can be found in Ref. [11]). Figure 4 shows the
gd;., and g„v terms separately (for a particular choice of
gauge ll 1]) at T=0 as a function of the number of elec-
trons. It demonstrates that in this case there is already
approximate cancellation at T =0. The erratic structure
on g,& is due to the fluctuations in the energy-level spac-
ing at EF. The length of the sides of the box are chosen
unequal in order to avoid degeneracies in this case. Fig-
ure 5 again shows how a steady diamagnetism survives at
high temperatures. The large paramagnetism for N
=1303 is a result of a small energy separation to the next
level [Eq. (2)], and for keT larger than this energy the
behavior for these near-degenerate levels is identical to
that of the degenerate levels in Fig. 1.

We stress that this is a 8=0 result and that we have
made no assumptions on the physical size of the system.
The size enters through the temperature scale and
through N, which is commonly proportional to the
volume. Size eAects in orbital magnetism are, therefore,
not a function of L/R„, but rather of kg T//t. .

Although most systems are not perfectly spherical, the
large diamagnetic susceptibilities for closed-shell config-
urations may be observed in size-selected clusters of al-
kali particles in vapor jets as predicted by Kresin [7].
The effect is limited, though, by the temperature,
kBT & h, . At room temperature the maximum diamag-
netic susceptibility will be observed for particles of about
100 atoms.

For a general shape of small particles any sign and

0.01 0.1 10
T

FIG. 5. Temperature dependence for N =750 and N =1303
(first high paramagnetic excursion in Fig. 4) of the rectangular
box. Inset: Representation of how the bulk Landau value is ap-
proached.
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FIG. 6. Average susceptibility of a Gaussian distribution of
boxes with difrerent N values, of width o.=90, as a function of
the center of the distribution No,

value above the diamagnetic curve in Fig. 4 is possible,
and no definite trend as a function of particle size is ex-
pected [11]. However, for a distribution of particle sizes,
the high paramagnetic excursions of Fig. 4 do not average
out, as is shown in Fig. 6. For su%ciently wide distribu-
tions the result is always paramagnetic and may be much
larger than ~gt ~. This result is analogous to the predic-
tions of AGI for the diffusive regime: When decreasing
the particle size for fixed temperature, g should increase
from gL to a paramagnetic value, when an ensemble aver-

age of different particles is considered. Such effects may
have been observed by Kimura and Bandow [8]. Their's
is perhaps the only direct observation of the Kubo size
effect for the spin susceptibility. At the same time they
find an increase in the paramagnetic background for
smaller particles, which has remained unexplained so far.
Their estimate of the average 4 for the smallest particles
is higher than 800 K [12]. This is sufficiently high to al-
low observation of orbital paramagnetism at room tem-
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perature and the size of the effect can easily be accounted
for. For particles larger than 100 A the level spacing A is
small enough that the bulk Landau value is expected in

the experimental range of temperatures, in agreement
with the observations. However, the observed tempera-
ture dependence for fixed particle size is weaker than ex-
pected from this simple model. For a detailed compar-
ison a more realistic model of level distribution should be
considered.

It is necessary to comment brieAy on the relation be-
tween this work and that of AGI [4], since the approach
is very different. We consider only simple, perfectly in-
tegrable model systems as opposed to the statistical treat-
ment of diffusive particles in AGI. Further, AGI consid-
er field-dependent effects at finite temperature, where we
study only the 8 =0 limit. The results presented in Figs.
4 and 6 are exact and only when the temperature depen-
dence of the susceptibility is calculated we make an ap-
proximation in using the grand canonical ensemble. This
results in small errors in g(T) for kqT(A; however,
qualitatively the results are correct. For ks T & 6 the re-
sults are quantitatively correct. In contrast to specula-
tions of AGI, the results for the diffusive and integrable
problems are not very different. In both cases a delicate
balance between paramagnetic and diamagnetic contribu-
tions exists, with a residual paramagnetism at low tem-
peratures when averaging over a set of particles. In AGI
the average is taken over distributions of scattering
centers; here we average over particle sizes. The very
fact that both studies find qualitatively the same results
suggests that the effect is very general, and independent
of the model considered.

Finally, we would like to point out that the cancellation
of the large paramagnetic and diamagnetic terms, that is
found throughout, is required by the correspondence prin-
ciple. For any classical system the Bohr-van Leeuwen
theorem [13] maintains that the orbital moment is zero.
At k&T»h, the quantization is washed out and the classi-
cal result should be obtained. The reason for gL to persist

is discussed very clearly by Robnik [3]. The gl, Eq. (4),
does not depend directly on the size of 6, but the quan-
tum nature enters via the existence of a Fermi energy.
Indeed, for kBT & EF Eq. (5) applies, which vanishes as
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