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The band gaps and exciton energies of CdS and GaP clusters are calculated for the first time using
pseudopotentials. The calculated exciton energies of CdS over a wide range of cluster sizes are in excel-
lent agreement with experiment. Furthermore, the exciton states of clusters with zinc-blende and hexag-
onal lattices are similar in large clusters, but differ dramatically in small clusters. Finally, the spectra of
small GaP clusters shift to red, instead of to the blue, with decreasing cluster size. These effects provide

novel ways of tuning the optical properties of clusters.

PACS numbers: 71.35.+z, 36.20.Kd, 36.40.+d

Theoretical and experimental investigation of clusters
is a rapidly growing area of research activity today. The
main focus of these efforts is to understand the effect of
dimensionality and size on the quantum-mechanical prop-
erties of many-particle systems [1-3]. The metal [2],
semiconductor [3], and van der Waals (insulator) clusters
[1] have all played a prominent role in this regard. These
efforts have yielded some understanding of metal and van
der Waals clusters. In sharp contrast, much less is known
about the semiconductor clusters, and that is the subject
of this Letter.

Recently, it was discovered [3] that the semiconductor
clusters of approximately 7-25 A in radius can be syn-
thesized in colloidal suspensions by controlled liquid-
phase precipitation reactions. Very sophisticated experi-
ments are currently underway to understand the absorp-
tion and luminescence spectra of these clusters as a func-
tion of their size [4]. Simple effective-mass models
(EMM) have been employed to qualitatively explain the
observed blueshift of the absorption spectrum. However,
this model gives quantitatively accurate results only for
very large clusters [4]. Hence, there is a need for micro-
scopic calculations geared towards mapping out the
energy-level structure of these clusters and explain the
salient features of their absorption spectra. Such studies
are very important because the low-dimensional semicon-
ductor materials are expected to exhibit anomalously
high nonlinear optical polarizabilities, because of which
these clusters may be useful as ultrafast optical switching
devices.

Our interest in this study is in intermediate to large
clusters for which structural and optical data are avail-
able experimentally. These clusters have zinc-blende
crystal structure and spherical shapes, but the electronic
excited states display quantum confinement effects
(QCE). Since total-energy calculations are not feasible,
we investigate the excited states using pseudopotentials.
Among the available pseudopotential techniques, the
empirical pseudopotential method (EPM) has proved to
be an elegant and simple means of obtaining the band
structures of semiconductor crystals with reasonable ac-
curacy [5,6]. Our objective here is to use the same pseu-
dopotentials to explain the cluster properties also.

The energy levels of the valence electrons in either the
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cluster or the crystal are determined by the Schrdodinger
equation

Hy,x(t) =E,(K)y, (r). 1)
In the pseudopotential method the exact crystal potential
is replaced by the pseudopotential ¥,(r) to obtain the
Hamiltonian

H=—(1?/2m)V*+V,(1). )
Since ¥,(r) has the contributions from all the atoms in
the crystal, it is given by

V,(r) =RZ‘Uj(r_R_dj) , 3)
J

where v; is the atomic pseudopotential of the jth basis
atom at a lattice site, R is the direct lattice vector, and d;
is the position vector of the jth basis atom relative to R.
The atomic potentials v; may now be expanded in plane
waves of the reciprocal-lattice vectors G. For zinc-blende
crystals, this procedure yields [6]

V,(r) =§ Vs(G)Ss(G)+iV4(G)S4(G)]

xexp(iG- 1), 4)
where the form factors Vs and V4 are given by
Vs(G) = ;‘ [U](G)+L72(G)],

Va6) =+ [01(G) —02(@)], )
and the structure factors are given by Ss(G)
=cos(G-t;), S4(G)=sin(G-t;), with t;=(1,1,1)ao/8,
ap being the lattice constant. In EPM, the form factors
are the adjustable parameters to be determined by fitting
them to the experimental optical data.

Once V,(r) is determined, the energy levels of the
valence electron as a function of k are calculated by re-
peated diagonalization of the Hamiltonian matrix H (k),
which is constructed in the plane-wave expli(G+k)-r]
basis. Figure 1(a) gives such a band structure for zinc-
blende CdS crystal obtained using EPM, 137 basis func-
tions, a9=>5.818 A, and the form factors given in Ref.
[6]. The calculated band gap of 2.44 eV is in good agree-
ment with the experimental value of 2.5 eV. The corre-
sponding calculations employing the local-density approx-
imation (LDA) underestimate the band gap by = 30%,
because LDA does not describe the conduction bands at
the same level of accuracy as the valence bands [7].

629



PHYSICAL REVIEW LETTERS

VOLUME 67, NUMBER 5 29 JULy 1991
T T T T T T \/ T 5 T T T T
oL (a)_ (a)
—_ . 4F
Nl 13
5 5
® )
c C
wl O8| 3+
2
0
5
S 2 4
o — 4r
5 2
2 5
w or 5
&
3,
X w L r X UK T
2 1 1 1 1

FIG. 1. (a) A portion of the zinc-blende CdS crystal band
structure near the top of the valence band. (b) The band
structure of a 15-A radius CdS cluster.

Suppose now that the physical dimensions of the crys-
tal are reduced from all sides to give a cubic cluster of
side length L =2R, where R is the radius of the cluster.
The energy levels no longer form a continuum now; in-
stead we obtain quantized energy levels with wave vectors

k=(n/2R)ny,ny,n.1, (6)
where ny, n,, and n; are the quantum numbers of a parti-
cle in a box. On the other hand, if we model the cluster
as a sphere of radius R, the wave vectors of the lowest al-
lowed states are given by jo(k,R) =0, whose solution is

»=nn/R. Since k, is along the radial direction, we pro-
ject it onto each of the Cartesian axes with equal magni-

tude to obtain Cartesian components of k. This pro-
cedure yields

k=(z/~3R)n.,n,,n.1. 7

The discrete energy levels thus calculated for these al-
lowed quantum states are shown in Fig. 1(b) for an R
=15 A cluster. We also found that the corresponding
band structure for the R=15 A cluster, modeled as a
cube of side length L =30 A, is very similar to that given
in Fig. 1(b). These calculations employed 137 G vectors
to converge the energies to about 0.01 eV. For both cubic
and spherical cluster models, the top of the valence and
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FIG. 2. Experimental and calculated exciton energies of CdS
clusters. The solid circles are the experimental data [4] and the
solid line is the result due to Brus’s effective-mass model with
m.=0.19, m; =0.80, ¢=5.5, and E;=2.5 eV [3,8]. (a) The
open circles and squares are from our calculations of the zinc-
blende CdS clusters with spherical and cubic shapes, respective-
ly. (b) Same as (a), except that the open circles and squares
are calculated for the hexagonal CdS clusters.

the bottom of the conduction bands lie at the smallest k
given by (ny,n,,n,) =1. For the lowest-energy transition
being studied here, only the energy gap at this k is of in-
terest.

From the band structures presented above we calculat-
ed the band gaps (E,) as a function of the cluster size.
We diagonalized a 283 %283 matrix for each cluster, to
converge E, to better than 0.01-eV accuracy. To the
band gap we added the electron-hole Coulomb and corre-
lation energies to obtain the exciton energies E, (in
atomic units) [3,8]:

E,=E,—1.786e?/eR —0.248ERy . ®
In Eq. (8), ¢ is the dielectric constant of CdS and Egy
=pue*/2¢’h? is the effective Rydberg energy of the exci-

ton, u being its reduced mass [8]. The exciton energies
thus calculated are plotted in Fig. 2(a), along with the re-
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sults from Brus’s EMM [3,8] and the experimental data
of Wang and Herron [4]. The lattice constants of
R=10.0, 7.5, and 6.5 A clusters are reduced from their
bulk values by 1.4%, 3.0%, and 3.9%, respectively. We
estimated these values from the shift of the (111) x-ray-
diffraction peak of the clusters [4]. If we use the bulk
lattice constant for these clusters, then the exciton ener-
gies would be higher by 0.16, 0.30, and 0.41 eV, respec-
tively. The R=5 A cluster has a pyramidal shape, but
the details of its structure are unknown [4]. Consequent-
ly, the exciton energies for this cluster are obtained by ex-
trapolation. Using the experimental lattice constants and
radii we estimate that the R =5.0, 6.5, 7.5, 10.0, 15.0,
22.5, and 30.0 A clusters have 13, 26, 39, 89, 287, 969,
and 2297 CdS molecules, respectively. From Fig. 2(a)
and these estimates what we observe is that over a range
of cluster sizes, the experimental results are in exception-
ally good agreement with our theoretical predictions,
especially for clusters with spherical shape.

Another aspect of QCE is the effect of crystal structure
on the exciton energies. To investigate this we repeated
the above calculations for clusters with hexagonal sym-
metry. These results are displayed in Fig. 2(b). What
we find is that our theoretical results are in agreement
with experiments for large clusters, but not for small clus-
ters. This result differs quite dramatically from that for
zinc-blende CdS for which both large and small clusters
give uniformly good agreement with experiment. This in-
dicates that small CdS clusters are probably zinc-blende
type, rather than hexagonal. This prediction is in accord
with the experimental data [4]. In addition, our calcula-
tions reveal that the crystal structure has a significant
effect on the band gaps and exciton energies of small
clusters, but not in large clusters. These results clearly
indicate that the exciton energies in small clusters are
sensitive to the crystal structure. Currently, there are no
experimental data on hexagonal CdS clusters with which
to compare our theoretical results. This is the first study
to address the effect of crystal structure on QCE and fu-
ture experiments on hexagonal CdS clusters will be help-
ful.

The clusters of interest here, except for the R=5 A
cluster, are experimentally determined to have spherical
shapes [4]. Nonetheless, we considered cubic clusters in
order to understand the effect of physical shape on the ex-
citon energies. From the results presented in Fig. 2 we
conclude that the shape has a significant effect on the ex-
citon energies even in large clusters. For zinc-blende CdS
clusters, for which experimental data are available, the
spherical shape gives better agreement with experiment
for all cluster sizes, confirming that these crystallites are
approximately spherical. Since we know that the kinetic
energy of a particle in a box is smaller than that in a
sphere of radius R =L/2, the cluster exciton energies are
underestimated in the cubic clusters, as seen in Fig. 2(a).
The spherical shape increases the kinetic energy just
enough to bring the theoretical results into agreement

with experiment. The exciton energies of rectangular and
ellipsoidal clusters will be in between these two curves,
depending on their precise geometry. The sensitivity to
shape observed here is indicative that the exciton wave
functions in these clusters have not converged to the bulk
limit, even though these clusters have bulk crystal struc-
ture.

We also found that when ag is reduced by 0.1 A the ex-
citon energies of R =5.0, 30.0, and o= A zinc-blende clus-
ters are decreased by 0.17, 0.24, and 0.27 eV, respective-
ly. Similar results are obtained for hexagonal clusters
also. These results indicate that the exciton energies of
small clusters are less sensitive to the lattice constant
than those of large clusters. This is a consequence of the
decreasing curvature of the valence and conduction bands
as one moves away from the band edges.

Finally, we investigated the direct transition in GaP
clusters using EPM. These results, presented in Fig. 3,
reveal that the exciton energies increase first and then de-
crease, with decreasing cluster size. We observed a simi-
lar trend in GaAs clusters also. This anomalous redshift
effect awaits experimental verification, but it cannot be
explained using EMM. However, our calculations quan-
titatively reproduced the lone experimental exciton ener-
gy of the R =12 A GaAs cluster, thus further enhancing
confidence in our method.

The effect of size on exciton energies has been previ-
ously investigated [3,9,10]. However, this is the first time
that a satisfactory agreement between theory and experi-
ment is obtained over a large range of cluster sizes. This
success is due to the microscopic nature of our calcula-
tions. Previous studies have employed either EMM or an
empirical tight-binding Hamiltonian (TBH) [3,9,10].
EMM is accurate only near k=0 and hence it consider-
ably overestimates the kineic energies in small clusters.
On the other hand, TBH describes the occupied molecu-
lar orbitals more accurately than the unoccupied orbitals
[10]. Furthermore, even with the simplest basis sets TBH
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FIG. 3. Exciton energies of spherical GaP clusters calculated
using EPM (circles) and the effective-mass model (solid line).
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calculations are computationally very demanding, requir-
ing diagonalization of = 10*x10* matrices [10]. On the
other hand, our calculations are much simpler to carry
out. We have also gone beyond the investigation of size
effect, and examined the effect of other factors, such as
lattice structure and lattice relaxation, on the exciton en-
ergies. The dominant surface effect in small clusters is
the lattice relaxation. We accounted for this effect in our
calculations by using the experimentally determined lat-
tice constants.

In summary, we carried out a systematic investigation
of quantum confinement effects in clusters using pseudo-
potentials. Our study provides a global understanding of
the changes taking place in the electronic structure of
clusters as the cluster dimensions, crystal structure, phys-
ical shape, and the lattice constant are varied. The calcu-
lated exciton energies of CdS clusters are in excellent
agreement with experiment over a wide range of cluster
sizes. These calculations also revealed that the exciton
energies of zinc-blende and hexagonal clusters are nearly
the same for large clusters, but significantly different for
small clusters. Hence, the optical spectra of small clus-
ters are sensitive to the crystal structure and the available
optical data are consistent with the zinc-blende lattice
structure. The exciton energies are also sensitive to the
physical shape and the lattice constant of the clusters.
The spherical shape gave best agreement with experi-
ment, indicative that even small clusters are approximate-
ly spherical. Small contraction of the lattice constant
also has an important effect on the exciton energies in
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small clusters. Finally, we predict anomalous redshift of
the exciton energies in small GaP and GaAs clusters.
These effects cannot be explained, even qualitatively, us-
ing the effective-mass approximation.
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