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A structure model for the decagonal quasicrystals AlCuCo and AlINiCo is proposed. The model
agrees with available experimental data, i.e., with three-dimensional and five-dimensional Patterson
analysis of x-ray-diffraction data and with direct-space atomic patterns found by high-resolution electron
microscopy. The model allows for a dualistic description. It can be viewed both as a set of specifically
decorated overlapping decagonal clusters and as a cutting and projecting of only two simple ‘““atomic sur-

faces.”

PACS numbers: 61.50.Em, 61.55.Hg

Among the numerous experimentally discovered deca-
gonal quasicrystals, two alloys, Alg;Cu0Cois and
AlyoNi;sCoys, have attracted the most attention. They
deserve this attention because of their outstanding prop-
erties: Up to cm-sized single crystals can be grown from
melt, and they are thermodynamically stable and exhibit
extremely sharp diffraction peaks (the coherence length is
about 2000 A) [1-7]. Moreover, the quality of the
diffraction pattern improves upon annealing [3,4].
A decagonal quasicrystal has a layered structure, with
every layer being a two-dimensional quasicrystal. The
stacking of layers along the tenfold axis is usually
presumed to be periodic. Although there are certain
doubts regarding the stacking periodicity [8], this ques-
tion will not be addressed below, and the structure will be
considered periodic with a period ¢ of approximately 4.5
A [1-7]. The doubling of this period reported in some
samples [1,6,7] is not taken into account.

The determination of the atomic structure of quasicrys-
tals is not trivial, as standard crystallographic methods
cannot be used straightforwardly because of the lack of
periodicity. There are two general experimental ap-
proaches based on two theoretical perceptions of what
quasicrystals are. One views a quasicrystal as a section of
definite “atomic surfaces” in five-dimensional (5D) space,
the coordinates of individual atoms being given by the
cut method [9]. The atomic surfaces of a particular
quasicrystal can be determined by measuring diffraction
intensities, calculating the Patterson function (electron-
density autocorrelation function), and deconvolving the
Patterson function numerically. This method, previously
used to treat icosahedral quasicrystals [10], has been re-
cently applied to decagonal ones [5,6]. The other, com-
peting, approach is based on the tiling and decoration
concept [11], which views a quasicrystal as being built
from two elementary cells, or tiles, which fill the space
quasiperiodically. The 5D space is used within this ap-
proach to refer to the coordinates of the tile vertices, not
individual atoms. Inside the tiles atoms are placed in po-
sitions that provide reasonable local packing. The two
approaches are not mixed and are sometimes considered
incompatible, which causes a sort of dispute between

adherents of the two methods. Neither of the two ap-
proaches works perfectly. Direct determination of atomic
surfaces by Patterson analysis relies on numerical struc-
ture refinement and gives only approximations of the
atomic surfaces, which, after being cut and projected,
often yield unrealistic local environments in physical
space. On the other hand, whereas any tiling model can
be viewed as a cut-and-project one, the number of atomic
surfaces is, in general, equal to the number of atoms in
the tiles. In all known cases [5,6,10] the Patterson
analysis shows only two or three very simple atomic sur-
faces. At a first glance, this rules out the elaborate tiling
models with many atoms in each tile which are usually
introduced to achieve reasonable packing. One of the
aims of this Letter is to present a structure which can
be obtained by both cut-and-project and tiling-and-
decoration methods, after certain restrictions are imposed
on both of them. The model obtained in this way appears
to be a good model of AlCuCo and AINiCo. It agrees
with experimental data: the results of 5D and 3D Patter-
son analysis of single-crystal x-ray-diffraction data [6,7]
and the direct-space atomic patterns found by high-
resolution electron microscopy (HREM) [31].

Cluster packing description.— There are two plane lay-
ers per vertical period in the proposed structure. Each
has only fivefold symmetry, but the layer at z =c¢/2 is ro-
tated by 36° with respect to the layer at z =0 revealing
overall decagonal symmetry. The atomic structure in the
x-y plane can be presented by two methods, whose
equivalence has been established analytically. The first, a
modified tiling-and-decoration method, is formulated as
follows. Our structure is built from one building block, a
decagonal cluster (Fig. 1). The particular atomic decora-
tion of the cluster coincides 90% with the decoration in-
ferred by Hiraga, Sun, and Lincoln from the HREM im-
ages [3]. The same cluster was also obtained by 3D Pat-
terson analysis [7]. However, it is not enough to deter-
mine cluster decoration: One must find out how clusters
are assembled together. Since tiling of the plane by de-
cagons is impossible, a covering of the plane is intro-
duced. Two clusters are allowed to overlap, but only the
two overlappings shown in Fig. 1 are permitted. Note
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FIG. 1. Two allowed overlappings of decagonal clusters and
corresponding tiles. A portion of the decagonal network hosting
the atoms is shown. Circles, Al; squares, transition metal; open
symbols, z =0; solid symbols, z =c/2 layer.

that no atomic displacements are introduced when clus-
ters intersect, nor are “glue” atoms [11] used.

Consider a covering of the plane by decagons such that
if any two clusters intersect then the intersection is one of
the two allowed ones (multiple intersections are not ex-
cluded). First, one has to prove that such a covering is
possible. This has been done in [12] by proving that any
such covering is equivalent to a binary tiling. A binary
tiling (Fig. 2) is a tiling by two Penrose rhombi such that
in every vertex all angles are either all even or all odd
(the angles 27/5 and 4x/5 are called even; n/5 and 37/5
are odd) [13]. This restriction has a physical basis: An
even and an odd angle cannot meet in one vertex, because
atomic decorations of their interiors are different and
cannot be matched. The basic building blocks, decagonal
clusters of 10.3 A radius, are centered at odd vertices,
whereas even vertices are corners of decagons (Fig. 1).
Strictly speaking, the cluster has decagonal shape but
only pentagonal symmetry; in particular, its corners are
of two types (“colors). When one goes around the clus-
ter (ie., an odd vertex) the colors of the decagon’s
corners (i.e., even vertices) alternate (Fig. 1). This leads
to a “colored” binary tiling, with all odd vertices being
equivalent and there being two inequivalent types of even
vertices, which alternate as described above. The self-
consistency of this alternation rule, not obvious from the
definition, has been demonstrated in [12]. The structure
can also be viewed as built from smaller decagons (of
7 7! radius) centered at odd vertices and from eleven-
atom ringlike clusters of 7 ~3 radius centered at even ver-
tices (do not confuse them with ten-atom rings inside de-
cagons centered at odd vertices, Figs. 1 and 2). All the
small decagons are oriented the same way, including
coloring, whereas the colors of eleven-atom rings alter-
nate. To transform the latter cluster from a “white” to a

FIG. 2. Atoms in the decagonal plane as obtained from 5D
Patterson analysis [6]. The right-hand panel is a section of
atomic surfaces by a plane spanned by one parallel and one per-
pendicular basis vector.

“black” state, one has to apply a screw axis transforma-
tion (36° rotation plus half-a-period vertical shift).

A local reshuffling move responsible for phasons is a
standard binary-tiling flip [13]. Combined with the
specific tile decoration (Fig. 1), it prescribes certain finite
but moderate (a couple of angstroms) jumps of individual
atoms (the details will be presented elsewhere).

Two features make the present model distinct from a
general tiling-and-decoration model. First, binary tiling
emerges as a consequence of rules for cluster overlapping
and the decoration of the Penrose tiles is deduced from
the cluster decoration. Second, all atoms sit on a decago-
nal network, i.e., every two atoms can be connected by a
path made of intervals of length a having ten decagonal
orientations (@a=2.44 A, whereas the cluster radius is
73a=10.33 A). The scheme also demonstrates that im-
posing reasonable rules of overlapping inevitably leads to
a 5D description.

Before mapping the present tiling description to the cut
representation one should realize that there are infinitely
many binary configurations and all of them are different
from conventional Penrose tilings. When all of the tile
configurations are ascribed equal statistical weights, one
obtains random binary tiling [13]. When the binary til-
ing.is viewed as a projection from 5D space with some ac-
ceptance domain with sharp boundaries, the binary tiling
is called “ideal.” There are some different choices of the
acceptance domains; below, one choice will be made: The
domain consists of three “pancakes,” a decagon [14], and
two 5S-stars, which are shown in Fig. 3 as subdivisions of
the whole polygons. The choice between random and
ideal versions is equivalent to the choice between ener-
gy and entropy as a factor stabilizing quasicrystals
[2-5,14,15]. The latter dispute is still unsettled and the
present model cannot help to resolve it: The model may
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FIG. 3. Atomic surfaces of “ideal” structure (no phason dis-
order). Left, transition metal; right, Al. Decomposition to
smaller polygons classifies local environments.

exist in both frameworks. However, the translation to the
cut language is easier with the ideal binary tiling.

Cut-and-project description.—To describe the same
structure in a cut formalism one has to lift the coordi-
nates of the individual atoms up to 5D space. If the
decoration of the Penrose rhombi were to be of a general
type, the lifting would create dozens of atomic surfaces.
However, straightforward analytic calculations show that
in the present model the atomic surfaces merge together,
forming only two larger atomic surfaces (Fig. 3). Thus,
the second, equivalent, cut-and-project description is as
follows: Coordinates of all the individual atoms can be
obtained by cutting four atomic surfaces. Two of them,
shown in Fig. 3, give the z =0 layer. One surface, occu-
pied by Al, is centered at —B, where B=(1,1,1,1,1)/5;
the other surface, occupied by transition (7") metal (Cu
and Co, or Ni and Co, which are mixed randomly), is
centered at +2B. The z =c¢/2 layer is given by the same
surfaces as in Fig. 3, but rotated by 36° and centered at
+B (Al) and —2B (T). Subdivisions of the atomic sur-
faces in Fig. 3 reflect different atomic environments (the
details will be presented elsewhere). The atomic surfaces
are not of a general form: They are flat, have complicat-
ed boundaries (which were never tried in Patterson analy-
ses), and are centered at special points of the 5D unit cell.
The latter fact was noticed in virtually all experimental
Patterson-analysis works, which might mean that tiling
and cut duality holds for icosahedral and other quasicrys-
tals. Note that the shapes in Fig. 3 have been obtained
from exact geometric considerations, not from computer-
assisted refinement of experimental data, as in [S] and
[6].

The atomic positions in Fig. 2 have been obtained by
Steurer and Kuo [6] by numerical 5D Patterson analysis
of x-ray data. Their work had been published before
Hiraga, Sun, and Lincoln’s clusters were announced [3].
For this reason the authors of [6] did not use the
knowledge of cluster geometry in their work; they deter-
mined atomic surfaces (“pancakes”) in 5D space by
direct numerical refinement. The atoms of Fig. 2 were
obtained by cutting and projecting these experimentally
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determined pancakes. The lines showing the decagonal
clusters and binary tiling have been added to the original
figure of Ref. [6] by the author of the present paper. The
agreement of Fig. 2 with the cluster representation is
fairly good but not perfect. This can be attributed to the
approximate character of the atomic surfaces in [6]: The
authors restricted themselves to decagonal pancakes and
conventional Penrose tiling, whereas real pancakes might
have a more intricate shape, such as in Fig. 3, and the til-
ing is binary. Furthermore, the pancakes in Fig. 3 corre-
spond to the ideal binary tiling. If the real quasicrystal is
stabilized by entropy or, at least, contains a substantial
amount of phason disorder, the boundaries of the atomic
surfaces would not be as sharp as in Fig. 3. One more
reason for a certain misfit between the theory and the ex-
periment is the fact that the structure described above is
a sort of ideal, stoichiometric structure; the real one may
differ by elastic deformations, chemical disorder or, con-
trarily, ordering of Ni, Co, or Cu, deviation from
stoichiometry, doubling or tripling of the unit cell along
the tenfold axis, some puckeredness of the layers, etc.
Nevertheless, one can easily see in Fig. 2 exactly the pro-
posed decagonal clusters, and, moreover, the clusters
overlap according to the rules shown in Fig. 1. The
diffraction intensities calculated for the model agree with
the measured ones [6] with an R factor of 16%. This ac-
curacy has been achieved without any serious refinement:
Only simple uniform phonon Debye-Waller factors were
introduced.

General properties of the proposed structure.— (1)
The space group is P10s/mmc (centrosymmetric), as
verified by characteristic extinctions in both observed and
calculated diffraction spectra [16]. (2) Kalugin’s homol-
ogy indices are (1,1), i.e., the number density in a decag-
onal layer is expressed via the basis reciprocal-lattice vec-
tor Q10000 as

n=-/5sin(x/5)(Q10000/27) *(N \+ TN>) ,

where N, and N, the homology indices, are both equal to
1. The latter fact means that from the homological point
of view the atomic surfaces in Fig. 3 are rather simple
[17). (3) The calculated density of 4.53 g/cm’ agrees
well with the measured density of AICuCo of 4.5 %0.05
g/cm?® [6]. (4) The calculated stoichiometric composi-
tion is about Algo7 40; experimental data range from 62%
to 68% Al Note that real material might be off
stoichiometry. (5) The interatomic distances are not
shorter than 2.44 A, which is acceptable for an Al-T
bond. The volume per atom is about 13.9 A3, showing
sufficiently dense packing; there are no big holes except
for cylindric wells positioned at odd vertices. However,
this is an experimental fact: Both HREM [3] and x-ray
[6,7] data show that cluster centers are vacant.
Comparing the present model with the experimental
data on Al;oNi;sCos is obscured by the disagreement be-
tween the data of Refs. [5] and [18]. The model agrees
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with [18] with approximately the same accuracy as for
AlCuCo (above). However, Ref. [5] reports not only a
set of x-ray intensities different from that of [6] but even
the space group P10/mmm. This might mean the ex-
istence of another decagonal phase in AINiCo which is
not described by the present model.
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