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Multifractal Wave Functions at the Anderson Transition
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Electronic wave functions in disordered systems are studied within the Anderson model of localization.
At the critical disorder in 3D we diagonalize very large (103823 && 103 823) secular matrices by means of
the Lanczos algorithm. On all length scales the obtained strong spatial Auctuations of the amplitude of
the eigenstates display a multifractal character, reAected in the set of generalized fractal dimensions and
the singularity spectrum of the fractal measure. An analysis of 1D systems shows multifractality too, in
contrast to previous claims.
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Within the problem of localization in disordered sys-
tems the behavior of the electronic wave functions is of
crucial importance for a variety of phenomena, like the
transport properties of amorphous semiconductors or the
excitation dynamics in molecular crystals. The qualita-
tive properties of such systems can be obtained already
from a simple tight-binding model like the Anderson
Hamiltonian which describes a regular lattice with site-
diagonal disorder. This model is known [1] to yield ex-
tended states for weak disorder in three dimensions (3D)
as well as in 2D samples with strong magnetic field. For
strong disorder, on the other hand, the electronic states
are localized and believed to decay exponentially in space.
This was proven in 1D systems [2] and has been explicitly
assumed in the scaling hypothesis of localization [3] and
corroborated in a variety of numerical investigations [4].

However, this exponential decay relates to the asymp-
totic properties of the envelope of the wave function while
the short-range behavior is characterized by strong fluc-
tuations. Approaching the mobility edge, which sep-
arates the localized from the extended states in the
energy-disorder diagram, this exponential decay constant
diverges so that the wave functions can be expected to
feature fluctuations on all length scales.

Even arbitrarily close to the mobility edge a state
should occupy only an infinitesimal fraction of space if it
is to be labeled a localized state. On the other side of the
mobility edge the states should extend throughout the
sample. Both characteristics can be accommodated at
the mobility edge if one assumes a fractal wave function
with a filamentary structure like a net over the whole
sample, as suggested originally by Aoki [5]. This idea
was numerically exploited by several authors, determin-
ing a fractal dimension from the density-density correla-
tion function [6], the participation number [7-10],or the
amplitude of the wave function [1 ll. A fractal behavior
could thus be established not only at the mobility edge
but more generally for short-range fluctuations of the
wave functions in disordered systems up to length scales
of the order of the localization length or the coherence
length of the localized and the extended states, respec-

tively. However, particularly in 3D systems the results
were rather limited due to the small system size that
could be treated numerically [6,7].

The observation of anomalous scaling properties [12]
as well as the fractal behavior of diff'erent characteristics
of the eigenstates as mentioned above show that the wave
functions cannot be adequately treated as a simple frac-
tal. Rather, the more general concept of multifractality
[13-15]has to be employed, yielding a set of generalized
dimensions. A few of these dimensions have been com-
puted in 2D as well as in 3D systems [16-18],suggesting
the multifractal picture. In the following we present a
comprehensive analysis of the spatial fluctuations of indi-
vidual eigenstates at the mobility edge in 3D samples
[19]. Because of our efficient implementation of the
Lanczos algorithm on a vectorizing computer we are able
to investigate much larger samples than previously stud-
ied, clearly displaying the multifractal properties. As an
analysis of the same model for 1D systems disproved
self-similar Iluctuations of the wave function [20), we
have also investigated very long 1D chains and found
multifractal properties, too, for very low disorder, in
agreement with previous doubts [21] cast on Ref. [20].

Our investigation is based on the Anderson Hamiltoni-
an
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with constant nearest-neighbor transfer integral V and
random potential s„governed by a uniform distribution of
width W. At the band center (F. =0) this model shows a
transition between localized and extended states at the
critical disorder W, =16.5V for 3D samples [1,4]. We
restrict the subsequent 3D analysis to this disorder.

The respective secular matrix for a system of N=47
sites is tridiagonalized by means of the Lanczos algo-
rithm [9], and the tridiagonal matrix diagonalized by
standard techniques in a straightforward way. As we are
interested in eigenvalues E; in the middle of the spectrum
the well-known occurrence of ghost solutions in the Lanc-
zos recursion [9] presents a nontrivial complication. In
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the present case, the size of the tridiagonal matrix had to
be increased up to 178000 to obtain the requested eigen-
states Ip;) =P„e;„In) with an accuracy better than 10
«r I IHv; —&;v; I I.

The multifractal analysis is based on the standard
box-counting procedure, dividing the system into Nz
boxes of linear size L and determining the box probability
of the wave function in the kth box,

L&&L

pi, (L) = g le;„I', k=1, . . . , W, ,
n=l

(2)

as a suitable measure. If the qth moments of this mea-
sure counted in all boxes are proportional to some power
r (q) of the box size,

g, (L) = gp,'(L)) L—
k

(3)
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multifractal behavior may be derived. A simple homo-
geneous fractal would be completely characterized by two
of the moments; the respective r(q) curve would be a
straight line. Therefore the r(q) curve presented in Fig.
1 is typical for a multifractal entity because of its non-
linearity. The physical meaning is that the measure dis-
tinguishes intertwined regions of the state which scale in
diA'erent ways according to the mass exponents r(q).
Thus each subset of the measure characterizes a fractal

with its own fractal dimension, and no self-similarity of
the complete state follows.

The generalized fractal dimensions Dq are then ob-
tained from

—z (q) =(q —1)Dv = lim 1ngv(L)/lnL .
L 0

(4)

For the computation of Di from Eq. (4) one has to em-

ploy a series expansion of pk around q =1. The impor-
tant features of Dq shown in Fig. 2 are the following:
The similarity dimension Do equals the Euclidean dimen-
sion, because the wave function is nowhere exactly zero,
so that all boxes constructed above contribute to the box
counting. This means that the support of the measure is

given by the total volume instead of some fraction of it,
.and accordingly DO=3. On the other hand, the informa-
tion dimension Di =2.17 is distinctly smaller [22]. This
fact demonstrates that a subset with the fractal dimen-
sion D i & 3 contains a fraction of the measure arbitrarily
close to the complete measure, i.e., all the information.

The correlation dimension Dq reflects the scaling of the
density-density correlation function or, equivalently, of
the participation number. Within the respective numeri-
cal errors our value Dq =1.68 is in agreement with the re-
sults of previous investigations concentrating on the frac-
tality of these quantities [6,7].

The limiting values of Dq for q~ + ~ describe the
scaling of those subsets where the measure, and thus the
wave function, is most concentrated or rarified, respec-
tively. %'e obtain D+ =1.05 and D — =6.06, but the
latter value is not very accurate because it is determined

by the smallest amplitudes of the wave function, which
are most sensitive to numerical errors.

While the discussion of the generalized dimensions Dq
is quite illustrative, the abstract analysis of multifractals
is often concerned [15] with the singularity strength of
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FIG. 1. Mass exponents r(q) of the measure pq(L) for an
Anderson-localized wave function at 8; =16.5V in a 3D sample
of N=47 sites. Integer values of q are marked by symbols.
The values of z are obtained from Eq. (3) by fitting a straight
line to the dependence of in@ vs lnL. The accuracy of the least-
squares fit, which has been controlled by computing the linear
correlation coe%cient, could be significantly improved by
averaging over all possible choices of the origin of the box parti-
tioning. This procedure also avoids the restriction that NI
=N/L' has to be an integer. In practice we have varied L be-
tween 2 and 46 and also included slightly noncubic boxes. The
discrete lattice of course limits the possible range of the
(multi)fractal behavior to scales above the lattice constant.
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FIG. 2. Generalized dimensions Dv corresponding to r(q) in

Fig. 1.
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the fractal, given by the Lipschitz-Holder exponent a,
and the corresponding singularity spectrum f(a). In the
kth box the singularity strength a is given by

pp(L) -L" . (s)

The relation f(a) completely characterizes the multifrac-
tal. In principle, it can be obtained [13,151 from r (q) by
means of a Legendre transformation, which, however,
strongly sufl'ers from numerical inaccuracies [22]. There-
fore we have employed a parametric representation [22]
off and rr in terms of q, evaluating

and

f(q) = lim gp&(q, L) Input(q, L)/InL
I —0 k

a(q) = lim gpk(q, L) lnpi, (1,L)/lnL
L —0 k

(7)

from the qth moment of the measure in the separate
boxes,

gg(q, t) p,'(I.&/Xu=f (1.). (9)
k

The results are compiled in Fig. 3 displaying a singu-
larity spectrum which is typical for multifractal entities.

3
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The number of subsets N(a) in which this strength is ob-
served is a fractal itself, with the HausdorA' dimension
f(rr):

N(a) -L f".

The particular cases discussed above are contained in this
plot in the following way: The maximum of the spectrum
corresponds to q =0, yielding f(a „).=3, the dimension
of the support of the measure. For q = 1 we have

f(a) =a. The limit q +~ (q —~ ) yields the
minimal (maximal) value of rr, projecting out the singu-
larity associated with the box containing the largest
(smallest) measure.

In conclusion, the computations of the mass exponents
r (q), the generalized dimensions D~, the Lipschitz-
Holder exponents a, and the singularity spectrum f(a)
consistently demonstrate the multifractal behavior of the
spatial Auctuations of the investigated wave function at
the critical disorder corresponding to the Anderson tran-
sition in 3D samples.

As these results contradict previous claims [20] with

respect to 1D systems we have also diagonalized the secu-
lar matrix of Eq. (1) corresponding to a very large chain
at low disorder. The derived r(q) spectrum is shown in

Fig. 4. We have tested that this feature is numerically
and statistically significant by a detailed error analysis
and by investigating several diff'erent wave functions. We
note that for a good accuracy it is necessary to restrict
the multifractal analysis in this case to box sizes below
L —1600. This is an obvious curtailment because this
length is of the order of the localization length and it is
unreasonable to expect the (multi)fractal behavior to per-
sist on larger length scales than that of the exponential
decay. The reason for the derivation in Ref. [20] is un-

clear; it may be due to the employed rescaling and
averaging.

The multifractality observed here is in.agreement with
the characterization of the disorder fluctuations [201 that
refer to difl'erent possible configurations of the disordered
potential in Eq. (1). In contrast to Ref. [20] we do not
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FIG. 3. Singularity spectrum f(a) for the same wave func-
tion as in Figs. 1 and 2. Integer values of the implicit parame-
ter q are marked by symbols. The data are obtained by least-
squares fits by Eqs. (7) and (g) for box sizes down to L =2,
again averaging over all possible origins of the boxes and in-
cluding slightly noncubic boxes. The accuracy, which is con-
trolled by computing the linear correlation coefficient, becomes
insufficient for the extreme values of q so that the expected
infinite slope for a a „„and a a;, cannot be obtained.
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FIG. 4. Mass exponents r(q) of the measure pi, (L) for an
Anderson-localized wave function at W=0.25V in a 1D sample
of N =80000 sites. Interger values of q are marked by symbols.
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find that it is necessary to distinguish spatial fluctuations
and disorder fluctuations. This is not surprising in view
of the finite-size scaling studies [4] of the logarithm of
the transmission probability, which explicitly use the
property of self-averaging, i.e., the equivalence of averag-
ing over disorder or spatial fluctuations.

In summary, we have demonstrated the multifractal
behavior not only at the critical disorder separating local-
ized and extended states in 3D systems, but also up to the
localization length in the more general case of an un-

doubtedly localized wave function on a chain. We expect
a respective behavior not only for localized states in 3D
systems but also for extended states in disordered systems
[191 up to the coherence length. It will therefore be an
interesting problem to investigate whether the metal-
insulator transition can be identified from such an
analysis in some way, e.g. , by a critical value of at least
one of the generalized dimensions, as previously suggest-
ed for the simple fractals [6,7,23]. Even more important
should be the consequences of the present analysis if one
describes transport properties, which are expected [11] to
be drastically influenced by the (multi)fractal behavior.

[1] For an overview, see Localisarion 1990, e—dited by J. T.
Chalker, IOP Conf. Proc. No. 108 (Institute of Physics
and Physical Society, London, 1991).

[2] N. F. Mott and W. D. Twose, Adv. Phys. 10, 107 (1961).
[3] E. Abrahams, P. W. Anderson, D. C. Licciardello, and T.

V. Ramakrishan, Phys. Rev. Lett. 42, 673 (1979).
[4] B. Kramer, K. Broderix, A. MacKinnon, and M.

Schreiber, Physica (Amsterdam) 167A, 163 (1990), and
references therein.

[5] H. Aoki, J. Phys. C 16, L205 (1983).
[6] C. M. Soukoulis and E. N. Economou, Phys. Rev. Lett.

52, 565 (1984).
[7] M. Schreiher, Phys. Rev. B 31, 6146 (1985).
[8] B. Kramer, Y. Ono, and T. Ohtsuki, Surf. Sci. 196, 127

(1988).
[9] Y. Ono, T. Ohtsuki, and B. Kramer, J. Phys. Soc. Jpn. 58,

1705 (1989).
[10] M. Schreiher, Physica (Amsterdam) 167A, 188 (1990).
[11]H. Aoki, Phys. Rev. B 33, 7310 (1986).
[12] C. Castellani and L. Peliti, J. Phys. A 19, L429 (1986).
[13] T. C. Halsey, M. H. Jensen, L. P. Kadanoff; I. Procaccia,

and B. I. Shraiman, Phys. Rev. A 33, 1141 (1986).
[14] H. G. E. Hentschel and I. Procaccia, Physica (Amster-

dam) 8D, 435 (1983).
[15] J. Feder, Fractals (Plenum, New York, 1988).
[16] S. Evangelou, Physica (Amsterdam) 167A, 199 (1990).
[17] J. Bauer, T. M. Chang, and J. L. Skinner, Phys. Rev. B

42, 8121 (1990).
[18] T. M. Chang, J. Bauer, and J. L. Skinner, J. Chem. Phys.

93, 8973 (1991).
[19] A multifractal analysis of extended states close to the

critical energy for a 2D disordered system in a high mag-
netic field has recently been given by W. Pook and M.
Janssen, Z. Phys. B 82, 295 (1991).

[20] L. Pietronero, A. P. Siebesma, E. Tosatti, and M. Zannet-
ti, Phys. Rev. B 36, 5635 (1987); L. Pietronero and A. P.
Siebesma, in Fractals in Physics, edited by L. Pietronero
and E. Tosatti (North-Holland, Amsterdam, 1986), p.
431.

[21] G. Mato and A. Caro, J. Phys. C 20, L717 (1987); J.
Phys. Condens. Matter I, 901 (1989).

[22] A. Chhabra and R. V. Jensen, Phys. Rev. Lett. 62, 1327
(1989).

[23] M. Schreiber, in Localisation 1990 (Ref—. [I]),p. 65.


