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Thermally Induced Hydrodynamic Fluctuations below the Onset of Electroconvection
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Measurements of the correlation function below the electrohydrodynarnic instability in a thin layer of
a nematic liquid crystal reveal fluctuating convection patches. Their amplitude A, correlation length g,
and correlation time r can be described by a stochastic mean-field model. The amplitude agrees with
the expected Auctuations due to thermal noise.

PACS numbers: 47.20.—k, 05.40.+j, 61.30.6d

In thermodynamic systems near critical points, thermal
noise leads to Auctuations in the order parameter with
characteristic size g and lifetime z, which diverge at the
critical temperature T, [1]. For the case of the liquid-gas
or liquid-mixture critical point, where the order parame-
ter is directly coupled to the density, the Auctuations be-
come visible close to T, (critical opalescence) [1]. Large
fluctuations lead to critical behavior which diff'ers from
that predicted by mean-field theory [1]. Analogous phe-
nomena are expected to occur also in nonequilibrium sys-
tems [2]. However, so far Iiuctuations have been ob-
served only near the threshold of a laser [3], where there
are no spatial variations [41. In that case, the experimen-
tal results can be explained [5] in terms of a single-mode
stochastic model. Examples involving spatial degrees of
freedom are hydrodynamic instabilities [2,6-8]. Howev-
er, for those systems fluctuations were regarded as unob-
servably small because of their macroscopic character
leading to characteristic dissipative energies many orders
of magnitude larger than k8 T [9]. Nonetheless, by
choosing a particularly favorable hydrodynamic system
and using digital enhancement of the signal-to-noise ratio
[10] we have been able to measure quantitatively the am-
plitude A, spatial extent g, and lifetime z of the Iluctua-
tions. The results agree with a stochastic model for a
spatially extended system with a noise intensity corre-
sponding to the thermal energy k&T, but cannot be ex-
plained by a single-mode model.

The measurements became possible by investigating
electroconvection (EC) [11] in a thin layer of a nematic
liquid crystal. Here fluctuation eAects are relatively large
because the transport coefficient which determines the
dissipative energy is small [2], and because a layer of
rather small thickness d can be used. The total gain in
the effective noise intensity compared to Rayleigh-Benard
convection (RBC) in water is typically 4 orders of magni-
tude.

We used a layer of thickness d =13~ 2 pm of the
nematic liquid crystal N-(p-methoxybenzylidene)-p-
butylaniline (MBBA). A preferred direction of the rolls
above onset is enforced by rubbing the glass slides which
confine the sample. The temperature is controlled to
+ 0.01 K. The rms value V of the ac voltage (45 Hz) is
the control parameter, and can be changed in steps of
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FIG. I. A and k measured at increasing (a) and decreasing

(+) s.

0.0035 V. The shadowgraph intensity I(x, t) is digitized
at various times t and at 512 positions x along a line
parallel to the wave vector of the convection rolls over a
length of 13.4d (the entire sample is about 100 times
longer than this). The modulation of the light intensity is
proportional to the director angle 0, which allows the
measurement of A =(0 ) ' as described elsewhere
[10,12].

In the bottom part of Fig. 1 we show 8 as a function of
the applied voltage. The squares are for increasing and
the circles for decreasing voltage. Unexpectedly, the bi-
furcation is hysteretic. The fully developed nonlinear
convection rolls above the jump are stationary. Because
of the hysteresis and the fluctuations, the last point mea-
sured below the transition at V=7.134 V is only a lower
bound for the subcritical instability, which was estimated
by a power-law extrapolation of z to be at V, =7.141 V.
This value serves to define the control parameter
s = (V/V, ) —1. The finite value of A on the lower
branch of the hysteresis loop stems from Auctuating con-
vection rolls. As indicated in the top part of Fig. 1, the
wave number k of these Auctuations smoothly joins those
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FIG. 2. Spatial structure of the lluctuations below V, (top),

and of fully developed convection (bottom), in a rectangle of
13.4d &&9.3d. The contrast in the top part is enhanced by a fac-
tor of 5.

of the fully convecting state.
An image of the fluctuations at e= —0.003 is shown in

the top part of Fig. 2 (for comparison, fully developed
convection rolls at a=0.001 are shown in the bottom part
of Fig. 2). It is apparent that both the amplitude and the
orientation of the rolls deviate from uniformity and parti-
cipate in the fluctuations. Their temporal behavior is
shown in Fig. 3. Successive measurements along one line
perpendicular to the rolls are displaced downwards in the
vertical direction. Clearly, permanent rolls do not exist,
but fluctuating regions of characteristic spatial and tem-
poral extent consisting of rolls with a wavelength similar
to that of fully developed convection are visible. The rolls
drift irregularly to the right or left. Their temporal
correlation (see below) suggests that they are the super-
position of right- and left-traveling waves of independent

FIG. 3. Temporal development of a line of length 13.4d mea-
sured over a time of 512 s.

and randomly varying amplitudes.
We measured the correlation function C(Ax, At)

=(I(x,t)1(x+Ax, t+At)) of the Auctuations at a given
e. Figure 4 shows an example of C(Ax, At) for several
discrete values At at s= —0.007. The data for C(Ax, 0)
are not shown because they are perturbed by instrumen-
tal noise [10]. The correlation function vanishes for
ht =5.6 s and then increases again. This is indicative of
the superposition of right- and left-traveling waves in sta-
tistically equal proportions. The spatial and temporal de-
cays and the well-defined wavelength of the fiuctuations
are apparent.

A theoretical expression for the correlation function is
derived from a linearized envelope equation representing,
e.g. , a left-traveling wave in an anisotropic system:

z.(a, +s e.)A = sA+g', e„'„A+g.'a,', A

+JQF(x,y, t), (I)
where JQF(x,y, t) models the noise with its spatiotem-
poral correlation given by

(F*(x,y, t)F(x+Ax, y+Ay, t+At)) =8(Ax)8(Ay)6(At) .

For simplicity all coefficients in Eq. (1) are taken real. In
a first approach we neglect the y dependence. One ob-

t

tains for the envelope of the space-time correlation in this
one-dimensional problem the analytic result

Cr(Ax, At)=(A*(x, t)A(x+Ax, t+At)) =A exp
h, terfc~

1 Ax/g At z

(At/z ) I/2 ~2

h,x+exp + erfc

. i/2
At 1 Ax/g
z 2 (At/ ) ~t'

htr
c2

J

(2)
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FIG. 4. Spatiotemporal correlation function measured at
c= —0.007. The solid line is a fit of the function C.„,
x cos(kx) cos(rot ). 0.5—

with

=Q/8rpgii( —s) ' (3)
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The two correlation times r =r p/( —s) and a =(~~/
s( —s) 't measure the (nonexponential) decay of a spa-
tially uniform and a spatially modulated state, respective-
ly, and ( =(~~/( —s) ' is the correlation length. The
correlation C„due to the right-traveling wave is similar,
with s replaced by —s, and the measured correlation is
the sum C,„„=Ct+C,. We fit C=C,„„cos(kx)cos(cot)
to the measured correlation functions by adjusting Q, g,
z, s, k, and m. The solid lines in Fig. 4 represent such a
fit. In Fig. 5 we show ( and r obtained from these fits as
a function of s. The solid lines are fits by r =rp/( —s)
and g =(~~/( —s) 't and yield (~~

= (0.32 ~ 0.03)d and r p

=0.074~0.001 s. The value of g~~ agrees with the one
for a stationary bifurcation fairly well, while zo is about a
factor of 2 larger than in the stationary case [13]. The
fluctuation amplitudes A for a&0 are shown in Fig. 6.
The solid line is a fit of Eq. (3) to the data. Using the
measured value for rod~~, one gets Q =2.6&& 10

A calculation of A from the two-dimensional model (1)
leads to divergences for large wave numbers. They can
be traced back to the fact that in the derivation of the en-
velope equation only slow spatial variations on the scale
of the roll wavelength are considered. To avoid the diver-
gences within this model two wave-number cutoffs are in-
troduced as fit parameters. The short-dashed line in Fig.
6 represents such a fit [14]. For comparison, the predic-
tion for 8 based on a single-mode model z OA =cA
+JQF(t), with (F(t)F(t+At)) =6(At), is shown as
well (long-dashed line). This curve, 2 —( —s) ', does
not At the data —an explanation of the experimental re-
sults is possible only when spatial degrees of freedom are
included. The fact that the one-dimensional model gives
a quite good fit to the data already deserves further inves-
tigation.

To compare the noise intensities predicted from ir-
reversible thermodynamics with those found experimen-
tally, we follow Ref. [2], p. 269. Considering the dynam-
ic equation for the director 8, (8„n3)+(ri,n3) =F3 (n3= 0, F3 is the strength of the noise) and neglecting dissi-

FIG. 5. The inverse of ( and r measured as a function of s.
The lines are fits according to the expected power laws.

pative cross couplings (e.g. , to the electric field) which
arise as higher-order gradient terms [15],one gets for the
correlation function

40
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A 2
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FIG. 6. 2 measured at subcritical values of c. The lines are
fits according to the single-mode (long-dashed), one-
dimensional (solid), and two-dimensional (short-dashed)
theories.

&F,(x, t)F, (x+Ax, t+At)) =2Q, ~(Ax) S(At),

with Q2 =k~T/Kd. For the director fluctuations with

wave number k, this yields (0 ) =Q2/k, . (Times are
scaled with p) 1/Kk, , p is the density, yl is the relaxation
constant of the director, and K measures the elastic ener-

gy. ) Inserting the rescaled noise strength into Eq. (1)
leads to Q = (1.8 + 0.3) x 10 . This predicted value

agrees with the measured value of (2.6~0.3) x10
fairly well, thus indicating that the Auctuations are due to
thermal noise. However, a more quantitative theoretical
estimate of the thermally induced Auctuation amplitude
would be desirable.

While the standard deterministic models for EC yield a
forward stationary bifurcation [16], we find at our driv-
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ing frequency and for our sample thickness a backward
oscillatory bifurcation. It was found experimentally that
thin samples, pure crystals, and high voltages favor an os-
cillatory bifurcation [17]; thus the discrepancy might be
due to the simplified modeling of the electric conductance
of the nematic [18]. Another possibility for the backward
nature is a critical renormalization eff'ect as predicted for
RBC [8]. However, EC in nematics is not expected to be
in the same universality class as RBC. We are not aware
of any predictions applicable to the critical behavior of
EC.
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