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Soliton Basis States in Shallow-Water Ocean Surface Waves
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The inverse scattering transform for the periodic Korteweg—de Vries equation is used to analyze
surface-wave data obtained in the Adriatic Sea and a robust soliton spectrum is found. While the soli-
tons are not observable in the data due to the presence of energetic radiation modes, a new nonlinear
filtering technique renders the solitons visible. Numerical simulations support the existence of solitons in
the measurements and suggest that, as a wave train propagates into shallow water, the solitons grow at

the expense of the radiation.
PACS numbers: 47.25.Qv, 47.10.+g

Zabusky and Kruskal [1] discovered the soliton in nu-
merical simulations of the periodic Korteweg—de Vries
(KdV) equation. The subsequent theoretical derivation
of the spectral solution to KdV for infinite-line boundary
conditions [2] hallmarked the development of a new
mathematical method, the inverse scattering transform
(IST), which solves certain nonlinear “integrable” (soli-
ton) wave equations for selected boundary conditions [3];
IST may be viewed as a kind of nonlinear Fourier
analysis. Nonlinear integrable systems are known in
many fields including hydrodynamics, solid-state physics,
optics, general relativity, molecular chemistry, and plas-
ma physics [3-5].

The IST for KdV with periodic or quasiperiodic
boundary conditions was discovered by Dubrovin, Mat-
veev, and Novikov [6]. Periodic IST allows for the spec-
tral decomposition of nonlinear wave motion into a linear
superposition of the nonlinearly interacting (hyperellip-
tic) oscillation modes or basis states for KdV [6-10] and
may be viewed as a nonlinear generalization of Fourier
series. The goal of this paper is to use periodic-
quasiperiodic IST to nonlinearly Fourier analyze ocean-
wave data.

A major difficulty arises in the experimental search for
solitons in physical systems and in the interpretation of
experimental data, particularly when periodic or quasi-
periodic boundary conditions are appropriate. It may not
be possible to observe solitons in real space because there
is no ‘“asymptotic state” (t— o), as with infinite-line
boundary conditions, for which the solitons evolve into
well-separated, rank-ordered pulses. In periodic systems,
especially when (a) the soliton spatial-temporal density or
energy is high or when (b) the radiation components ob-
scure the solitons, no individual solitons are observable in
configuration space [4,10]. It would be naive to conclude,
however, that solitons are not present, or that their dy-
namics are not important. We view the nonlinear Fou-
rier-analysis approach presented herein as providing a
way to determine soliton behavior in complex systems of
this type.

IST contains all the solutions to the periodic-quasi-
periodic KdV equation. Wave forms such as sine waves,
Stokes waves, solitary waves, cnoidal waves, narrow- and
broad-banded wave trains, plus many other possibilities,
together with nonlinear interactions, are automatically in-
cluded. IST is essentially a kind of spectral analysis that
determines which nonlinear modes are active in a system.
Herein we analyze a time series to allow the data to de-
scribe which particular nonlinear oscillation modes dom-
inate the measured wave dynamics.

We assume that shallow-water surface waves (of small
but finite amplitude and little directional spreading) may,
to second order in nonlinearity and dispersion, be de-
scribed approximately by the (spacelike) KdV equation
[11,12]:

netconx +ann. +pnux =0, 1)

where n(x,?) is the wave amplitude as a function of space
x and time 1, co=(gh) %, a =3co/2h, and B=coh ¥/6; (1)
has the linearized dispersion relation o =cok — k3, g is
the acceleration of gravity, co is the linear phase speed,
and h is the water depth. Subscripts with respect to x
and ¢ refer to partial derivatives. KdV solves the Cauchy
problem: Given the wave train at =0, n(x,0), (1)
determines the motion for all time thereafter, n(x,?).

Data recorded as a function of time at a single spatial
location imply the need to determine the scattering trans-
form of a time series, n(0,t). Hence we employ the
timelike KAV equation (TKdV) [3]:

nx+con +a'nn +p'nu =0, (2)

where ¢4 =1/co, &'=—a/cd, and B'= — B/c{; (2) has the
linearized dispersion relation k =w/co+pfw?/c§. TKAV
solves a boundary-value problem: Given the temporal
evolution 7(0,2) at some fixed spatial location x =0, (2)
determines the wave motion over all space n(x,7). We
assume either periodic [n(x,t) =n(x,t+7T)] or quasi-
periodic boundary conditions [there exists a 7'(¢) such
that [n(x,t +7) —n(x,1)| < e for all 1.

We now describe the IST of a periodic, broad-spectrum
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wave train 7(0,¢) (simple modifications are required for
quasiperiodic boundary conditions [9]). The IST spec-
trum is determined from the one-dimensional Schroding-
er eigenvalue problem [6]:

v+ 00,0+ 02y =0, (3)

where A =ac3/68 and Q is a complex frequency, with
Q?=E real. One solves (3) to obtain the nonlinear
Fourier spectrum of a measured time series. Bloch eigen-
functions solutions of (3) are periodic or antiperiodic on
0<t<T. The trace A(E) of the monodromy matrix M
[which maps solutions of (3) from ¢ to t+7] is the
Floquet discriminant, A(E) =% TrM. The solutions of
A(E) =1 determine the discrete eigenvalues E; (1 < j
=< 2N +1) which are the main spectrum of the motion.
Two adjacent eigenvalues define an open band (E,;,
Ej;+1) when |A(E)| > 1; when E;j=E;;+; the band is
degenerate. The auxiliary spectrum consists of hyperel-
liptic functions u;(x,7) which oscillate between the two
eigenvalues of an open band according to nonlinear ordi-
nary differential equations given elsewhere [6,8,9]. The
width of an open band is the amplitude of an hyperelliptic
oscillation mode, e.g., a “single degree of freedom,”
“spectral component,” or “basis state” of KdV with am-
plitudes a;(f;) =|u;| =(E;;+1—E;;)/2A and associated
frequencies f;=j/T (f;=q;/n) [9,10]. A linear super-
position of these basis states is the solution to the KdV
equation:

N
An(x,0)=—E+ Z‘ Rpj(x,t) —Eyy—Ez+1]. (4)
=

In the absence of interactions among nonlinear spectral
components, the u;(x,7) degenerate to elliptic functions.
For small-amplitude wave motion the u; reduce to sine
waves and (4) becomes an ordinary Fourier series [7-9].
Linear Fourier analysis is the linear superposition of
noninteracting sinusoidal waves; nonlinear Fourier anal-
ysis for KdV (4) is the linear superposition of the non-
linearly interacting, hyperelliptic oscillation modes.

The periodic KdV spectrum is often separable into soli-
ton and radiation components [7,10]. Solitons are found
on the extreme left of the Floquet discriminant where we
compute the index I,=(Ez,+1—E)/(Esn+1—Ezm—1)
for all n, 1 =n=<N; I, decreases from 1 as n increases
and the value of n =/ at which 7, ~0.99 is used to esti-
mate the reference level, E .;=FE,+;, upon which the
solitons propagate in configuration space [7]. The inter-
val 1 = I, = I, defines the soliton spectrum and 7.t > I,
defines the radiation. The N soliton amplitudes are then
given by 10, =2(Es—E)/A (1 =<n=<N) for E<E.,.
The radiation components consist of the amplitudes
aj(fj) for E > E .

We call the determination of the KdV spectrum from
(3) le.g., the soliton amplitudes n,, and radiation modes
a;j(f;)] the direct scattering transform. We call the
determination of the p;(x,7) and the solution to KdV by

the linear superposition formula (4) the inverse scattering
transform. Computer algorithms are given elsewhere
[9,10,13,14].

Consistent with the assumptions implicit in the deriva-
tion of the KdV equation [11] we have selected a 500-
point time series from the Adriatic Sea measurement pro-
gram [15] [Fig. 1(a)] for which the wave amplitude is
small but finite with respect to the depth (~16.5 m) and
for which there is little directional spreading (only 2% of
the energy in the particle velocity spectrum is transverse
to the dominant wave direction). We first remove the
mean of the time series. This fixes the mean level in the
absence of waves as being equal to the water depth; the
reference level Er upon which the solitons propagate
then lies below the mean level. To estimate the degree of
nonlinearity we have computed the (timelike) Ursell
number, Ur=3gHsTdZ/4h 2. H, is the significant wave
height (average of the highest one-third waves) and Ty is
the dominant period (corresponding to the largest linear
Fourier component). For the time series of Fig. 1(a),
Ur~8. This may be compared to the following some-
what arbitrary classification: Ur =<1 describes linear
motion, 1 <Ur=< 10 is moderately nonlinear, and Ur
= 10 is strongly nonlinear. The linear Fourier spectrum
is shown in Fig. 1(b). The Floquet discriminant of the
data is given in Fig. 1(c); the radiation spectrum of the
time series is rather large and there are nine soliton com-
ponents. We graph the nonlinear spectrum as a function
of the frequency f (= Q/r) such that the radiation lies to
the right of the reference level fref [=(E ) '/*/xl, and
the solitons to the left of frr in Fig. 1(d). The vertical
arrows denote the nine solitons in the spectrum; the
length of the arrows corresponds to the soliton ampli-
tudes. A magnified view of the soliton part of the Flo-
quet discriminant is given in Fig. 1(e). The zero cross-
ings to the left of the vertical dashed line (E.) corre-
spond to the soliton eigenvalues. Note that E . lies to
the right of the mean level in spectral space [Fig. 1(e)]
and below the mean level in configuration space [Fig.
1(f)], thus ensuring a zero mean for (4). In Figs. 1(b)
and 1(d) we show the “KdV cutoff frequency” fkqv
~co/2nh; for spectral components to the left of fxqv the
second-order term in the dispersion relation, relative to
the first, is small ( <0.2) and KdV is a good approxima-
tion to the wave motion. This cutoff is represented in Fig.
1(c) by Exav = (zfxav)>

Finally we use IST to filter the radiation spectrum
from the measured time series so that only the soliton
spectrum is represented in real space [16]; this corre-
sponds to summing (4) over only the soliton components
of the spectrum [9]. The resultant filtered wave train is a
long-period, low-amplitude wave field consisting of nine
interacting solitons [Fig. 1(f)]; the solitons are also shown
in Fig. 1(a) at the same amplitude scale as the data.
Each of the maxima in Fig. 1(f) corresponds to a single
soliton interacting with its nearest neighbors. It is clear
that the solitons significantly contribute to the energetics
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FIG. 1. (a) Measured times series with H;=3.0 m, T, =9.1 sec, and #=16.5 m. (b) Fourier spectrum of (a). (c) Floquet
discriminant of (a); the soliton and radiation parts of spectrum are well separated. (d) Scattering transform of (a). (e) Floquet
discriminant in the soliton part of the spectrum of (a). (f) Soliton train obtained by filtering out the radiation spectrum and invert-
ing the scattering transform of (d); solitons are also graphed in (a) at the same scale as the data.
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of the surface wave field.

Are the observed solitons “spurious” in some sense, or
perhaps an artifact of the data processing procedure? In
order to investigate these possibilities we have conducted,
in a more extensive analysis [16], both laboratory experi-
ments and numerical simulations of a (spectrally broad-
banded) Boussinesq model [17], using the numerically in-
tegrated KdV equation as a control. We find that solitons
also occur in these systems (for both narrow- and broad-
banded wave trains) and they behave qualitatively in the
same way as those discovered in the Adriatic Sea. This
suggests that the solitons observed herein are real physi-
cal phenomena which play a natural role in shallow-water
wave dynamics.

An interesting result of our data analysis is that the
solitons tend to be found beneath the maxima in the en-
velope of the wave train, e.g., they often lie under packets
[Fig. 1(a)], but are rarely found between packets. In our
field, laboratory, and numerical simulations [16] the ma-
jority of the observed solitons obey this rule. This sug-
gests a possible phase-locking mechanism in which the
solitons often remain beneath and are uniquely associated
with a particular packet as it propagates shoreward. Our
numerical simulations, together with IST, indicate that
the solitons begin forming far offshore (they are infin-
itesimally small here) and then slowly change their form
adiabatically [18] while growing at the expense of the ra-
diation as the wave train propagates into shallow water.
For sufficiently small bottom slope the soliton fission pro-
cess is not evident; for large bottom slope the solitons
may actually fission. Miles [19] has predicted the forma-
tion of solitons in shorewardly propagating wave trains,
and our experimental results agree with many of his con-
clusions; future work may provide more quantitative com-
parisons.

The presence of solitons in the data contrasts with the
traditionally held beliefs (1) that nonlinear wave trains of
this type can be fully described perturbatively to second
order (including the spectrum and the bispectrum) and
(2) that the major nonlinear statistical effect is the non-
Gaussian behavior of the amplitude probability density
function. Note that we did not a priori need to include
solitons as a descriptor of the wave motion. They have
been found to occur naturally within the nonlinear spec-

tral structure of the KdV equation.

We thank Professor C. Castagnoli and Professor
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lating discussions.
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