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Gravity Invasion Percolation in Two Dimensions: Experiment and Simulation
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We present experiments and computer simulations of slow drainage in a two-dimensional porous medi-

um. The eAect of gravity is systematically varied by tilting the system from the horizontal position. The
width cr of the front between the fluids is found to scale with the dimensionless Bond number Bo (ratio
between gravitational and capillary forces) as er —Bo ', as predicted by theory. The external perime-

ter of the invaded structure is shown to be fractal with the fractal dimension D, =1.34 for length scales
smaller than the front width.

PACS numbers: 47.55.Mh, 05.40.+j, 47.55.Kf, 64.60.Ak

Slow fluid-Auid displacement in a porous medium un-

der the influence of gravitational forces is important in oil
production, in hydrology, in chemical engineering, and in

the physics of disordered media. Front structures ob-
served in two-phase flow exhibit patterns that range from
compact to disordered and ramified [1,2]. Commonly
studied processes are fast viscous fingering [3-5] dom-
inated by viscous forces (modeled by the difl'usion-limited

aggregation algorithm [6]) and slow invasion percolation
(IP) [7,8], where capillary forces dominate, which is

simulated by the IP algorithm [9,10]. The interfaces be-
tween the fluids form fractal fronts [11,12] having no in-

trinsic length scale.
Most systems of practical importance are three-

dimensional (3D) and include fluids of different densities.
Therefore, it is important to study the effect of gravity on

the front structure. Gravity causes hydrostatic pressure
gradients in the fluids, and introduces a length scale that
leads to crossover phenomena. If the less-dense fluid is on

top of the heavier Auid, gravity eAects stabilize the front.
In quantitative terms the competition between gravity
and capillary forces is described by the dimensionless
Bond number: Bo=ga Ap/y, where g is the acceleration
of gravity, a is a typical pore size, hp is the fluid density
difference, and y is the fluid interface tension.

Little experimental information on gravity eff'ects is
available and experiments with a systematic variation of
Bo are needed. Clement and co-workers [13] performed
3D IP experiments. Nonwetting Woods metal was slowly
injected from below into a column of crushed glass. Hor-
izontal cuts of the solid material were analyzed to deter-
mine the spatial correlations of the metal and the fractal
character of the front was studied. However, they used
only one value of Bo.

Here we present two-dimensional (2D) experiments
where, for the first time, Bo was varied systematically by
tilting the plane of the experimental model from the hor-
izontal plane. The resulting invasion front geometry was
studied quantitatively and compared to theory and 2D
computer simulations. Figure l shows pictures of experi-

ments and results from simulations at two difIerent Bo.
We found (Fig. 2) that the front width scales as

c -Bo
The exponent 0.57, consistent with the theoretical predic-
tion of —', , will be discussed below. We also found that
the fronts between the two Auids had a fractal dimension
D p l 34 consistent with the fractal dimension of ex-
ternal perimeters [14,15] found in our simulations:D„=1.39; see Fig. 3. These values are consistent with

heuristic arguments [14,15] which predict a fractal di-

mension of 3 for the external perimeter of percolation
clusters. Fronts, both experimental and simulated, cross
over to a linear behavior at length scales larger than the
front width.

In IP at breakthrough, the invading Auid forms a single

FIG. 1. (a) Slow displacement of glycerol-water mixture by
air in a two-dimensional porous medium at angle 0=3' to the
horizontal (Bo=0.005) and (b) 0=11 (Bo=0.018). (c) Nu-
merical simulations of invasion percolation in a gradient, on a

square lattice of size 400X400 at Bond number Bo =0.001 and

(d) Bo=0.01.
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FIG. 2. Front width cr as a function of Bond number
(Ho=a Apgsing/y). Points represent measured widths of ex-
perimental fronts. The shaded area represents + 1 standard
deviation of front width obtained in numerical simulations. The
slope of the straight line is —v/(1+ v) = —0.57, as predicted by
the theory.
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FIG. 3. Data collapse of the box-counting data for twenty
uncorrelated fronts from thirteen experiments (black dots),
each at diferent Bond number Bo. The numerical results are
given as the shaded area, representing ~ 1 standard deviation
of box numbers at each box size.

cluster connecting the source to the sink. Slow displace-
ment of an incompressible Auid without buoyancy in 3D
produces a cluster that has the same scaling properties as
percolation clusters [9,16]. Wilkinson [17] introduced
the theory for 3D IP with buoyancy and developed an al-
gorithm to simulate the process. He argued that in 3D
the characteristic length g of trapped regions scales like a
percolation correlation length, depending on the concen-
tration of invaded sites, p, as g —(p —p, ) ', with v
=0.88 [16]. Interpreting Bo as the gradient of p yields

p —p, —(Bo and thus g —Bo '/ '+'. The width L of
the transition region where both phases percolate scales
differently: L —1/Bo [17]. The theory was supported by
3D simulations [17].

Sapoval, Rosso, and Gouyet [18] discussed the width of
2D diffusion fronts in terms of gradient percolation,
where the occupation probability p =p(x) depends on the
position x. With arguments similar to those used by
Wilkinson [17], they found that the front width a scales
as o.-G ' '+', with the occupation probability gra-
dient 6 substituting for the Bond number.

In the present paper we extend Wilkinson's theoretical
discussion to 2D IP. Although trapping is very important
for the behavior of the bulk of the cluster in 2D, we argue
that in 2D systems the front of the invading cluster,
identified as its external perimeter, is not affected by
trapping. This is because the perimeters of the trapped
regions do not belong to the external perimeter. There-
fore the external perimeter of IP (with and without trap-
ping) is equivalent to that of a percolation cluster.

If the system includes buoyancy, the front becomes
spatially limited. The trapped regions inside the invaded
structure are generated within the span of the front so
that the front width o. sets an upper limit to the linear
trapped-region size g: a=(. We conclude that g should
scale with the same exponent v of ordinary percolation, in

both 2D and 3D.
In IP, at some position of the Auid-Auid front, x, the

probability of invading pores is p(x ) =p, . The capillary
pressure diAerence of two arbitrary pores on the front de-
pends on the distance as P —P =(x —x )Bo, where the
dimensionless capillary pressure is P =(a/y)P„.~ [17].
The front of the invading cluster is thus equivalent to the
connected-cluster front in gradient percolation [18],
where the front width scales as Eq. (1). The basic argu-
ment for the front width [17,18] depends on the fact that
the correlation length scales with the deviation from the
critical occupation probability. When the fjords of the
front are comparable in size to the correlation length,
x —x —g-o, they are closed and trapped regions re-
sult.

The analogy between our invaded sites and occupation
in percolation is based on a mapping between P and the
occupation probability p in the following way:

f P(x =x +o)
N(P)dP p —p, -(

m

where N(P) is the normalized dimensionless capillary
pressure distribution when Bo=0. A uniform distribution
gives P —P, =AP. For a nonsingular distribution a Tay-
lor expansion of N(P) around P gives A/t P+%/t P
+PAP + . Neglecting higher-order terms giving
corrections to scaling, and using the results above, we get
Eq. (I).

The experiments were performed using transparent
two-dimensional porous models consisting of a monolayer
of 1-mm glass beads placed at random and sandwiched
between two plastic sheets [19,20]. The model had di-
mensions 400X350 mm, porosity &=0.7, and was sup-
ported between two 25-mm Plexiglas plates. The plastic
sheets were forced into contact with the glass beads by a
transparent PVC air pillow inflated between a supporting
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plate and one of the sheets. The model was placed on a
stand that enabled us to set the angle 9 between the hor-
izontal and the plane of the model.

In the experiments air invaded a glycerol-water mix-
ture (dyed black with Nigrosine) of viscosity p =280 cP
and surface tension @=64 dyn/cm. Air entered through
a 7X5-mm duct across the top edge of the model as the
glycerol was withdrawn through a similar duct at the bot-
tom edge using a syringe pump. The fiow rate was 6 ml/h
(mean front velocity =24 mm/h) and low enough to en-
sure that the experiments were in the IP regime.

In our experiments only the gravity component g sin0 is
relevant. Therefore we use the modified Bond number:
Bo-a Apgsin&/y. Experiments with Bo in the range
0.004-0.093 (2.5' ~ 0~ 90 ) were photographed and
the negatives digitized at a resolution of 120 pm per pixel
(corresponding to 11.8 pixels per pore) using a film
scanner (Nikon LS 3500) connected to an Apollo work
station.

Experimental fronts were identified in digitized photo-
graphs using image processing software developed here.
Details of the analysis are found in Ref. [201. The front
widths for twenty uncorrelated experimental fronts, from
thirteen independent experiments, were determined as
follows: The number of pixels belonging to the front as a
function of position from the bottom edge was counted.
These numbers had an approximately Gaussian distribu-
tion centered at the mean position of the front. The front
width o. was defined to be the standard deviation of this
distribution of perimeter sites. Figure 2 shows the depen-
dence of cr (in the units of typical pore size =1 mm) as a
function of Bo. The experimental results (points) and re-
sults from simulations (discussed below) are both con-
sistent with Eq. (1) (solid line).

To simulate the IP process the porous medium was
modeled by a square lattice of size L~ &Lq (L ~

=400 cor-
responds to the width of the experimental model used,
Lz =1200) consisting of nodes (pores) connected by
bonds. The bonds of the lattice were assigned random
numbers r;o drawn from a uniform distribution on [0,1].
Each of these numbers represented the threshold value
for the capillary pressure needed to penetrate the bond
connecting two pores. In simulations the hydrostatic
pressure gradient was introduced [17] by assigning the
number r; =r;o+G(Lq —x) to the ith bond. Here
G =Ho/2 is the gradient and x denotes the bond's position
measured from the bottom edge of the lattice.

The simulations started with all pores filled by the de-
fending "Auid" except sites along the upper edge which
were invaded by air. At each time step the pore that was
invaded was the pore connected to the already invaded re-
gion by the best bond, i.e., the bond that had the lowest
number r;. The simulation stopped when the lower edge
was reached. In the IP process regions of the defending
Quid sometimes became completely surrounded by the in-
vading Auid. The surrounded regions could not be invad-

ed since the defending Auid was incompressible in our ex-
periments. Therefore, in simulations, the trapped regions
were identified and closed for further invasion. The trap-
ping rule leads to structures that differ from ordinary per-
colation clusters [9,161.

The effect of gravity was investigated in simulations by
a study of the invasion front for ten gradient values, cor-
responding to Bo in the range 0.001-0.1. For each Bond
number fifty statistically uncorrelated fronts were ana-
lyzed. The front was defined to be the external perimeter
[14,15] of the invasion cluster, and the front width was
determined by the method used for experiments. In Fig.
2 the results of the simulated front widths are summa-
rized as the shaded area representing 1 standard devia-
tion around the average width obtained in the simula-
tions. The simulations describe the experimentally ob-
served effect of gravity well. We observe no significant
corrections to scaling within the precision of our experi-
mental data. This indicates an approximately uniform
capillary threshold distribution in the experimental model
within the range [P(x —a), P(x +a)].

The fractal structure of the fronts for experiments and
simulations were examined by the box-counting method.
The number N of square boxes of side 6' needed to cover
the front scales as

N(6') =Noa f(8/a), (3)
where D is the fractal dimension of the front, f(x) is
a function depending only on the combination 8/o, and
No is the number of boxes of size 6 =a. Fitting
log[N(B)a /No] by the straight line D log(8/a)+4,
where D and A are the only two free parameters gave us
the best scaling data collapse presented in Fig. 3. Here,
the data (at all Bo) were fitted for box sizes 6/a (0.3.
In Fig. 3 points are the experimental data, while the
shaded area represents ~1 standard deviation around
the mean of the simulation box-counting data. We ob-
tained D,„~= 1.34+ 0.04 for experimental data andD„=1.39~0.02 for simulations. Crossover to a one-
dimensional front is seen at the rescaled box size
8/o ) 10. We find that our results are consistent with the
fractal dimension of external perimeter of the percolation
cluster [14,15] D, =1.37. This result indicates that the
external perimeters of percolation and IP with trapped
clusters have the same structure.

In summary, the effects of gravity tend to stabilize the
drainage front. Invasion fronts have a Pnite width, o—Bo ' '+', with v = 3, consistent with the experimen-
tal results and numerical simulations based on the IP al-
gorithm. We have shown that the geometry of the front
is well described by a modified IP algorithm with trap-
ping. The front is shown to be fractal with a box-
counting dimension D,„~= 1.34+ 0.04, consistent with
the simulations, D„=1.39~0.02. We conclude that
two-dimensional gravity drainage in a porous medium
may be quantitatively modeled by IP with a gradient.
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