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Transient-Gain-Assisted Noise Reduction in Photodetection of Nonclassical Light
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The eA'ect of transient gain in photodetection of light is studied. By treating the photoelectron multi-
plication as a classical, stochastic process, a generalization of the quantum Mandel formula is given. To
illustrate the theory developed, the detection of sub-Poisson light from single-atom resonance Auores-
cence is studied. It is shown that the results may substantially diAer from those predicted from the Bur-
gess variance theorem. In particular, a reduction of noise of the photoelectric counts can be achieved
even if the value of the gain rate is increased.

PACS numbers: 42.SO.—p, 42.80.Sa

In the standard theory of photoelectric detection of
light the statistics of the photoelectrons primarily emitted
by an illuminated photosurface is calculated [1-8]. In
quantum optics, the result is well-known Mandel formula,
in which the photoelectric counting distribution is ex-
pressed in terms of normally and time-ordered correlation
functions of the electric-field strength of the light field to
be detected. In this way, the statistics of the photoelec-
tric counts is closely related to that of the light. In par-
ticular, nonclassical light with sub-Poisson statistics gives
rise to a noise reduction of the photoelectric counts below
the Poisson level, which just corresponds to the case when
the photodetector is illuminated with nonfluctuating clas-
sical light or quantum light in a coherent state.

In many practical cases, however, photodetector de-
vices are used that operate by multiplying the photoelec-
trons primarily generated. Clearly, this multiplication
process introduces, in general, additional noise, so that
the sensitivity of the receiver is determined by the noise
of both the light and the gain process. However, ap-
propriately tuning the two noise sources to each other
with regard to their time characteristics may substantial-
ly improve the sensitivity, as we will show.

There is a series of articles dealing with the amplifica-
tion process within the framework of deterministic rather
than stochastic description [9-11]. The concepts of sto-
chastic treatment commonly used invoke the assumption
of instantaneous multiplication [12-15]. Roughly speak-
ing, this assumption means that the transit time through
the multiplication region is required to be much smaller
than the detector integration time, which may become
crucial in high-bit-rate optical communication. Calcula-
tions without this assumption were performed for the case
of a single photocarrier entering the multiplication region
[16].

The aim of the present Letter is to generalize the quan-
tum Mandel formula for the case of an additional sto-
chastic multiplication process being present, without the
assumption of instantaneous multiplication. This renders
it possible to relate the statistics of the amplified pho-
toelectric counts to those of the light and of the multi-
plication, as well as to study the time behavior of the
"cooperative" action of the two noise sources. To illus-
trate the theory developed, the noise reduction in the

y(x t At) =((1+x) ""') (2)

from which the probability distribution function can be
derived by diA'erentiations:

N

Ptv (t, At ) = y (x;t, At )&'. Bx
(3)

Substituting in Eq. (2) for M(t, At) the result of Eq.
(1), we may write

(4)

To perform the n; and rn; averagings we make the follow-
ing assumptions and approximations.

(i) Following the standard photodetection theory [1-3]
we assume the probabilities for multielectron emissions
from a detector atom during the time interval t, t+h, t are
much smaller than the probability for single-electron
emission, so that we may let n;(z~t, rAz) =0, 1, p~n;(zI,
Az) =0, l.

detection of single-atom resonance fluorescence is dis-
cussed, the simplified model of an exponential gain pro-
cess being used.

We are interested in the number of carriers M(t, At)
detected during the time interval t, t +h, t. Subdividing
the detector integration time At into small time elements
h, i according to i~ =t+ jAr, with j=0, 1, . . . , J and
JAz =At, we may represent M(t, At) as follows:

N,

M(t, At) = g g n;(z, , Az)m;(t+At —z, ).
i =

I j=O

Here, n, (z~, Az) is the number of photoelectrons that are
primarily emitted by the ith atom of the photosensitive
part of the detector during the time interval i~, T ~ + h, r,
and m;(t+At —z~) is the gain factor describing the sub-
sequent multiplication process, JV, being the total number
of detector atoms. We now regard M (t, At ) as being a
stochastic process composed, according to Eq. (1), of the
stochastic processes n;(z~t, rAz) and m;(t+At —z, ). In-
stead of explicitly determining the probability distribu-
tion function Ptv(t, At) for detecting N electrons during
the time interval t, t+h, t, we prefer to calculate the gen-
erating function
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(ii) We suppose the photoelectrons undergo multiplica-
tion processes of equal stochastic character and the pro-
cesses for different photoelectrons are not correlated
with each other [&m; (r )m; (r ')

&
=&m; (r )&&m; (r ')

& if
i&i', &m;(r)& =&m; (z)& =&m(z)&l.

Equation (4) then simplifies to

(s)

where

z(x;z) =&(1+x)

n(rd, Ar) = gn;(r, , Ar)i=] (7)

is the stochastic variable representing the total number of
photoelectrons (primarily) emitted during the time inter-
val T:j, ij+h, ~. Applying standard photodetection theory
[1-3] we may perform the remaining n averaging in Eq.

& [AM(r+Ar )] '& = a
eI+AI

dr &m'(r+Ar —r)&&:I(r):&

is the generating function for the multiplication process,
and

Na

(S) to obtain

r hI
y(x;t, ttt)=(exp eJ d lz( )z&z( xt+tt t—z) —11 ),

(8)
where

(9)

E + (r ) and E (r ), respectively, being the positive
and negative frequency parts of the operator of the
electric-field strength (taken at the position of the pho-
tosensitive entrance plane of the detector with efticiency
a). Further, the:: notation introduces the familiar nor-
mal and time orderings. Note that in Eq. (8) the j sum is
represented as an r integral.

From Eq. (8) together with Eq. (6) both the probabili-
ty distribution function Pz (t,At ) [Eq. (3)] and the (fac-
torial) moments may be derived by straightforward
differentiations. Clearly, if there is no gain process, that
is to say z(x;z) =1+x [cf. Eq. (6)], Pz(r, At) reduces to
the well-known quantum Mandel formula [1-3].

Let us consider the variance &[AM(t, At)l &, which is
derived to be

where

r I+at r

+a „dr dr'&m(r+Ar —r )&&m(r+Ar —r')&&:AI(r )AI(r'): &, (io)

&m(r ) &
= z(x;r )

x=0

&m '(r )& =&m(r )&+ , z(x;r)
X

If the time dependence of the gain process can be disregarded, Eq. (10) reduces to the Burgess variance theorem [17]
widely applied to so-called instantaneous amplifications.

To illustrate the theory developed let us adopt the simple model of a Markovian multiplication process with exponen-
tial amplification and study the effect of finite amplification time on the noise reduction in the number of output carriers
for the case of the detector being illuminated by sub-Poisson single-atom resonance Auorescence light. For this purpose
it is useful to represent the variance &[AM(t, At)] & [Eq. (10)] in the form

PAI
&[AM(r, Ar)]'& =ll+&t)(r, Ar)la„~, dr &m'(r)&&:I(r+Ar —r):&, (13)

where

(is)
where

&t(r, Ar) = afo'fdr dr'&m(r)&&m(r')&&:AI(t+At —z)AI(t+At —z'):&
(i4)fg'dr &m'(r)&&:I(r+Ar —r):&

may be regarded as being a natural measure of the departure of the variance of the number of output carriers from the
variance for the case of the radiation field being in a coherent state. In this case we have &t)(t, At) =0. A reduction of
noise below this level may be achieved by using nonclassical sub-Poisson light (see below). Note that in the case without
amplification (&m & =&m& =1) the P function reduces to Mandel's Q function [18].

Following Ref. [19] we may represent the generating function z(x;r ) as follows:

z(x;r ) =1+&(r )xi[i —R (r ) —1 ]x],

E(r) =exp[amin(tT, r)], (16)
a and tT being the gain rate and the time of duration of the gain process (transit time through the multiplication re-
gion), respectively.
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Making use of the results given in Ref. [18], the stationary intensity and intensity correlation function needed read as

z nR/p
&:I(t+At —r ):)=(:I(t):)=(:I:)=a',

—, nR/p +1

(:Ai (t+ At r) A—i (t+At —r'):) =(:Ai(t)Ai(t+ r —r'):)
= —(:I:)e p ' ' [cos[n'p(r —r')]+ (3/2n') sin[n'p(r —z')]j,

(i7)

where
n'=(n'/p' ——) '" (19)

nR and p, respectively, being the Rabi frequency and the radiation damping parameter. The unspecified constant tt'

will be included in a modified detector efficiency a =aa' where 0 ~ a ~ 1 (cf. Ref. [20]).
Combining Eqs. (11), (12), (15)-(18),and (14), after some algebra we eventually arrive at the rather lengthy formu-

la (At~ tT)
y(t, At) =p(At;-a, tT)

a(At tT—) 2 nR/p'

a(At —tT)(2 —e "')+I —e "' (2 nR/p'+I)' p(At

x, 6p(At —tT)+, +enR/p 7 —3p(dd —tT)/2 (9/2n )(I nR/p +f ~
sin[n'p(At —tT)]

—,
'

nR/p +1 —,
'

nR/p +1
n'/p' 7—

+f2 cos[n'P(At —tT)]
—,
' nR/p'+1

+e ' "' jf2cos(n'pAt) f ~
sin(n'—pAt)I + (f2+f3) [I —e

' "cos(n'ptT)[

(20)

where

, (a/p)(n, '/p' —', )+--', (nR/p' »—
(a/p+ 1)(a/p+ 2) + n R/p

2(3a/p+ 7 n,'/p')—
(a/p+ 1 ) (a/p+ 2) + n /p

(a 2/p2+ n 2/p2 7)( ~ n 2/p2+ I )

[(a/p —1)(a/p —2)+ nR/p ] [(a/p+1)(a/p+2)+ nR/p ]

(18/n') (n,'/p'+ —, a '/p' —I ) (-,' n,'/p'+ i )

[(a/p —
1 ) (a/p —2) + n R/p ] [(a/p+ I ) (a/p+ 2) + n R/p ]

(-,' n,'/p'+ i)(p/a —
—,
' )

5=6
(a/p- I )(a/p 2)+ nR/p'-

(21)

(22)

(23)

(24)

(25)

Typical examples of the behavior of the p function are
shown in Fig. 1.

As expected, for a =0 or tT =0 the p function reduces
to the Q function of Ref. [18] [P(At;0, t T ) = P (At;
a;0) =Q(At)] It can fur.ther be proved that in the ap-
proximation of the Burgess variance theorem being used
the amplification process is predicted to make the relative
noise reduction worse by the factor

y(At;a, tT)
Q(At ) 2 e

which tends to 2 as the value of at T goes to infinity. If
the value of At is not. large compared with that of tT, ap-
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t plication of Eq. (26) may lead to substantial error (cf.
Fig. 1). From the correct result of Eq. (20) we see that
the asymptotic behavior of p(At;a, tT)/Q(At) for large
values of a (a))P, nR) is given by the relation

y(At;a, tT) a(At —tT)
Q(At) a(At —tT)(2 —e ')+1 —e

Q(At tT)—
(27)

Whereas for At)) tT Eqs. (26) and (27) obviously lead to
equal results, Eq. (27) shows that P(At;a, t T )/Q (At )
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tends to zero as h, t goes to tT, that is to say, the am-
plification process tends to prevent the reduction fu ion o noise

It is worth noting that Eq. (27) reveals the following
surprising fact. Let us choose At in such a way that
a(lJ.t —tT) » l. In this case we have

tlat(at;a, t T )
Q(t5t) 2

Q(&t t T)—
Q(&t )

(28)

Now suppose the absolute value of the Q function does
not monotonically increase with time. In other words,
there are regions of time in which the inequality ~Q(ht
—tT)~ & ~Q(t5. t)~ may be expected to be fulfilled. In
these regions of time the factor Q(At —tT)/Q(ht) com-
pensates partly the factor (2 —e

' ') ', and the value of
the relative noise reduction tends to increase. This dem-
onstrates that, dependent upon the internal dynamics of
the (nonclassical) light and the multiplication and the
time scale chosen, increasing gain rate may be assisted by
an improvement of the relative noise reduction in the out-
put signal. To observe the eA'ect in the case under study
the values of the times tT, h, t, h, t —tT are desired to be
comparable with the value of the duration of the Rabi
period QR ', which for its part should be smaller than the
value of the decay time P

' [0 ' = (0.2-0.1)P ']
Since the value of the transit time is typica11 t
=1O '-1O 4

a y
s, relatively strong atomic transitions are

favavoring. For example, assuming the transition dipole
moment is d =10 -10 Asm we t t
=10 —10 s ', so that in the case when Qtt ' =(0.2-

0.0
0.00

t, /at

FIG. 1. The relative noise reduction (solid line) as function
of trlht for weak and strong amplification, the value of the
Rabi frequency being larger than that of the radiative decay
rate. The result is compared with that of the Burgess variance
theorem (dashed line).

—
10.1)p (laser intensity Pt =4-16 Wcm ), the Rabi

period becomes comparable with the transit time. Note
that for a typical gain rate a=10'' s ' the conditions
a» IIR, p are fulfilled.

We finally note that in the case of optical receivers,
such as avalanche photodiodes with two-carrier multipli-
cation or dead-space-modified avalanche photodiodes, the
more complicated multiplication statistics may give rise
to additional eAects on the output noise. In particular,
dead space aAects the statistics of the output signal by in-
troducing an additional sub-Poisson effect [21].

The authors acknowledge helpful discussions with Dr.
L. Knoll.
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