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We study the chiral-odd spin structure functions of the nucleon, h ~(x) and h2(x), their physical

significance, sum rules, and model estimates. We show that they can be measured in the Drell-Yan pro-
cess with polarized beams at order g and g ', respectively.

PACS numbers: 12.40.Aa, 13.85.Qk, 13.88.+e

The nucleon's parton distributions characterize its
properties in hard scattering processes. Measurement of
these distributions, which has been undertaken for over
twenty years, provides us with considerable insight into
the quark-gluon substructure of the nucleon. The spin-
independent quark and gluon distributions have been
measured in a variety of experiments and with high accu-
racy. The longitudinal quark-spin distribution g~ (x) has
been measured at both SLAC and CERN, and the data
have prompted much theoretical work on the spin struc-
ture of the nucleon. The aim of this paper is to charac-
terize a new class of nucleon structure functions, the
chiral-odd spin structure functions h~(x) and hz(x), to
study their properties, and to describe how they can be
measured in lepton pair production with polarized beam
and target ("polarized Drell- Yan process").

The structure function h ~(x) was defined first by Ral-
ston and Soper [1] in their systematic study of the polar-
ized Drell-Yan process, where it is called h (x). [Ko-
daira et al. and Bukhvostov, Kuraev, and Lipatov [2] also
mentioned h~(x). ] More recently, Artru and Mekhfi [3]

apparently rediscovered h~(x) —called A~q(x) by them—calculated its QCD evolution, and mentioned its place
in the polarized Drell- Yan process. Collins [4] and
Cortes, Pire, and Ralston [4] have recently discussed
h~(x). Some of our discussion of h~(x) overlaps the
work of Refs. [1-4]. We cannot find any mention of the
structure function h2(x) in the literature, nor can we find

any systematic exploration of sum rules, Regge behavior,
model dependence, etc. , for either h ~ (x) or h2(x). Final-
ly, distinctions between the chira1-even spin-dependent
structure functions g~(x) and g2(x), on the one hand,
and the chiral odd spin-d-ependent structure functions
h~(x) and h2(x), on the other hand, have never been
carefully drawn in the literature and there is considerable
confusion surrounding (especially transverse) spin effects
in hard processes. We hope to clarify the matter in this
Letter.

The parton distributions in QCD are defined by the
light-cone Fourier transformation of field operator prod-
ucts. The simplest quark-parton distributions are related
to the target matrix elements of bilinear quark operators,

e' '(PSly(0)y„y(kn) IPS& =2[f
~ (x)p„+Mf4(x)n„],

e"'(PSly(0) y„ysy(Xn) IPS) =2[g)(x)pp(5 n)+ [g)(x)+gp(x)]5~„+M'g3(x)n 5n„],2' (2)

axe' "(PSIy(0) tit() n)IPS) =2Me(x),
2z

(3)

e'"'(PS
I y(0) tT„,i ysy(Xn) IPS) =2[It t (x) (5~pp, S~,p„)/M—

+ fh 2 (x ) + h ) (x )/2] M (p„n, p,n„)(S.n )+ h 3 (x )M—(S&„n, S~,n„)], —

(4)

where n and p are null vectors of mass dimension —1 and
L

1, respectively (n =p =0, n+ p =0, n. p =1). P
and 5 are the nucleon momentum and spin vectors [P
=M, P =p+ (M /2)n, 5 = —M, S„=Snp„+S.pn„
+5&„,P 5 =0]. For a target moving in the e, direction:

p = (I/J2) (P,O, O, P ), n = (1/J2) (1/P, O, O, —1/P). The
order in Q

' (twist) in which these distributions enter
hard processes is determined by a simple algorithm: A
generic quark distribution in (1)-(4) contributes like
Q' ", where d is the number of powers of M or 5& in its
coe%cient.

According to (1)-(4), the complete specification of the
light-cone quark correlation function requires nine distri-
bution functions: three twist 2 (f~,g~, h~), three twist 3
(e,g2, h2), and three twist 4 (f4,g3, h3). At each twist
there is one spin-average distribution (f~, e,f4), one
chiral-even spin distribution (g~, g2, g3), and one chiral-
odd spin-dependent distribution (h~, hz, h3). This simple
pattern can be understood in the light-cone formalism of
Kogut and Soper [5], in which the quark field y is
decomposed into "good" and "bad" components, y+ and
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L'(xP)L(—xP) ~1Pe, ), (5)

hi(x) =—Re(Pe~lL'(xP)R(xP) ~Pe~),

for x & 0. Here R(xP) [L(xP)] annihilates a right-
[left-] handed quark with k+ =xP+ and any k&. For
x &0 we find f~( —x) = f~(x), g~( ——x) =+g~(x),
and h~( —x) = —h~(x), where the overbar denotes the
replacement of R and L by R and L which annihilate
right- and left-handed anti quarks, respectively. It is
clear from (5) that f~(x) and g~(x) count right- and
left-handed quarks.

y — (y+ =P+y, P+ = —,
' y+y —). Correlators of the

form y+y+ are twist 2, y+y —+ y —y+ are twist 3, and

y —y — are twist 4. For each light-cone projection, the
counting of the helicity amplitudes Ap, H, I„H,for forward
quark-nucleon scattering is the same. (h and H are heli-
cities of quark and nucleon, respectively. ) Using parity
and time-reversal invariance, we find that there are three
independent helicity amplitudes, 811 11, 411 11, and

41111. For the appropriate light-cone components, (f~,

e f4) ~11,11++11,11 (g~ h& g3) +11,11 +11,ll
(h ),gT, hi) —&1111, where gT =g)+gp, hL =hp+h )/2.
Only chiral-even distributions (f's,g's) contribute to
deep-inelastic scattering when small quark-mass eA'ects

are ignored. The chiral-odd distributions (e,h's) can be
measured in certain physical processes such as Drell-Yan
production of muon pairs.

At the level of leading twist, a complete quark-parton
model of the nucleon requires three quark distributions:

f~, g~, and h ~. Their physical meaning can be made clear
by introducing projection operators for the "good" com-
ponent of the Dirac spinor. The usual choice is I'I g
= —,

' (1+.y ), which project on chirality [1]. After per-
forming a momentum decomposition of the Dirac field
and a projection with Pl R [5], we obtain

f, (x) = (P ~R'(XP)R—(XP)+L '(XP)L(xP) ~P),
1

g~(x) =—(Pe,
~
R'(xP)R(xP)1

The interpretation of h ~ (x) is obscure in a chiral basis.
It is revealed by using the projection operators Q+-
=

2 (1+ y'y ) =
2 (1+ y'S'~) instead of PL, PR. In

terms of the Q ~ basis,

f)(x) =—(P~a (xP)a(xP)+P (xP)P(xP)1P),1

h)(x) = (Pe—~~a (xP)a(xP) P(x—P)P(xP)~1Pe

and g~(x) is oA'diagonal. Here a (P) annihilates a quark
with Q+a=a (Q-P=P). Apparently, h~(x) measures
the probability to find a quark in an eigenstate of the
transversely projected Pauli-Lubanski operator $'&@5 in a
nucleon 1ikewise polarized. W& yp commutes with the
free-quark Hamiltonian and is a light-cone good opera-
tor. For that reason, a simple parton model can be made
to interpret the distribution h~(x). This basis was intro-
duced in hadron-hadron scattering, where it is known as
the "transversity" basis [6]. Hence we name h~(x) the
quark transversity distribution From (.6), it is clear that
~h~(x)) ~ f~(x). It should be stressed that h~(x) does
not measure the quark's transverse spin distribution. The
quark-spin operator projected along the nucleon spin,
X& =yoysS'&, does not commute with the free-particle
Hamiltonian, i.e., there exists no energy eigenspinor
U(p, ) such that Z~U(p, ) =X~U(p, ). In the light-cone
formalism, the transverse spin operator is a bad operator
and depends on dynamics. Nevertheless, a transverse-
spin average can still be defined in the nucleon state, and,
according to (2), it is just gT. gT(x) is twist 3 and is sen-
sitive to the quark-gluon interactions, a clear sign that no
simple parton interpretation can be made for it [7]. The
Burkhardt-Cottingham sum rule [8], Jg2(x) dx =0,
guarantees that the quark-spin contribution to the nu-

cleon spin be the same for any polarization. [Note: As
discussed in Ref. [7], fg2(x)dx =0 may be realized for-
mally by a cancellation of the integral over data
(lxl &0) by a 8function at x=0.]

To derive sum rules for h~(x), we introduce a set of
twist-2 operators,

0 "' '""=S„ya"'iy iD"' . iD""y—trace for n =1 2 . . .

and their matrix elements,

(PS~0 "' '""~1PS)=2a, t„(SP ' —S"'P )P—"' . P""/M —trace,

where S„symmetrizes the indices p~, pq, . . . ,p„.Then, from (4) and using h~(x) =0 for ~x~ ~ 1, we derive

(7)

(8)

p oo r 1

dxx" 'h~(x) =J dxx" '[h~(x) —( —1)" 'h~(x)] =a„ (9)

if the above integral is convergent. A simple Regge analysis shows that as x 0, h ~(x) x ', where a is the relevant
Regge intercept. Like g~, the Pomeron does not contribute to h~(x), so we expect the moments of h~(x) to be conver-
gent even for n =1.

Consider the n =1 sum rule in some detail. To clarify the Aavor content, we rewrite the relevant matrix element a],
the "tensor charge, " as 6q, where q =u, d, s, etc. To understand its physical meaning, we compare 6q with hq, the
quark helicity contribution to the nucleon spin. In the rest frame of the nucleon, P„=(M,O, O, O) and S„=(O,S), so (8)
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becomes (PS~qZ;q~PS) =26qS;. From (6) and (9), we find

( 1 "dk+
dx[h((x) —h~(x)] =6'q = (Pe&~a (k)a(k) —a (k)a(k) —P (k)P(k)+P (k)P(k)~Pe&). (10)

Therefore, Sq counts valence quarks (quarks minus antiquarks) of opposite transversity. The sea quarks do not contrib-
ute because the operator 0"'=bio." y5y is odd under charge conjugation. In contrast, the quark spin operator, 8"
= yy" y 7((, is even under charge conjugation. The corresponding equations for Aq are (PS ~q tZ;q ~PS) =2AqS; and

pl ."dI+
dx[g~(x)+g~(x)] =Aq= + (Pe, ~R (k)R(k)+R (k)R(k) L(k)—L(k) —L (k)L(k)~Pe, ).

Obviously, hq includes the helicity of the sea. The oppo-
site charge conjugation and chiral properties of A" and
0"' make it clear that h ~(x), while spin dependent, does
not measure quark spin. (Formally, the spin tensor densi-

ty M,"~;, is just —, e"' A .) The name transversity distri
bution for h((x) avoids possible confusion with the trans
verse spin distribution gT.

Returning to the sum rule, if one writes hq =hq'+h, q',
the sum of valence and sea contributions, one might
speculate that Bq =hq'. This is indeed the case in the
nonrelativistic quark model, which predicts Bq =hq

'

=Aq, where Au = 3, Ad = —3, and As =0.
However, in a relativistic valence-quark model such as
the MIT bag model, the speculation is false. Instead,
Aq'=cf(f ——,

'
g )r dr, 8'q =cf(f + ~ g )r dr, where

c is a constant and f and g are upper and lower com-
ponents of the quark wave function (in a y -diagonal
basis). Thus, relativity introduces a deviation of Aq and
6'q' from hq and a splitting between hq and 6q:
8q —Aq

' =c —,
' fg r dr.

Of course, these estimates about Bq are made in the
context of rather naive models of the nucleon. However,
it does appear that the tensor charge 6q, free from sea
quarks, provides a middle ground between the experimen-
tal data on Aq and the nonrelativistic-valence-quark-
model estimate hq, and a measurement of 6q may pro-

vide us with some knowledge about the relevant impor-
tance of the relativistic and sea-quark effects on hq. To
illustrate the relativistic effect, we have calculated hi(x)
for a single quark in a nucleon in the MIT bag model.
The result is shown in Fig. 1 where it is compared to
g((x).

High-twist structure functions cannot be interpreted as
simple quark distributions. For this reason, they are po-
tentially useful to understand the quark-gluon dynamics
of confinement in QCD [7,9]. There are two important
advantages in studying twist-3 structure functions com-
pared with twist 4 or beyond. First, gz(x) and h2(x)
contribute to certain spin asymmetries at leading order in

1/Q and, therefore, they can be extracted straightfor-
wardly from data. Second, although twist-3 structure
functions couple to complicated quark-gluon correlation
functions under QCD evolution, they have no explicit
dependence on gluon fields. This second feature renders
it possible to calculate them in valence-quark models
without dynamical gluons.

As it is defined in (4), hq(x) is not completely deter-
mined by matrix elements of twist-3 operators. Instead,
h2(x) receives a contribution from the same operators as
h((x). The same phenomenon was recognized in the case
of g2(x) by Wandzura and Wilczek [10]. We find [11]

hi(x) ~ ~ h I (y) ~x h ( (y)
h7(x) = — +2x 0(x) dy —0( —x) dy +h2(x),

2 4g y2 Q —] y2

where h2(x) is defined as follows. Define

(t)„(=——,
' Z„)77(O "'iy5iD"' (igF. ') iD"" 'y,

R„=6( —(r7„( (l =2, . . . , n —
1 ),

and its matrix elements,

(13)

(PS IR„(iIPS)=2Mb„($„iS"'P"' P"" '. (l4)

Then, the sum rules for h2 are

1.5

1.0

0 5

0.0

„x"'h2(x)dx =—[(n + [ )/2]

1=2
1 — j7„(. (15)2l

n+1
0 . . . , I. . . , I, . . . I. . . , I. . . ~ I

—05—025 0 025 05 075 1

The appearance of the combinations of 6I in R~ ensures
that each sum rule has definite charge conjugation. The
first two terms in (12) give a trivial or kinematic contri-
bution to h2(x). The last term, h2(x), contains the truly
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FIG. l. Comparison between g~(x) (dotted line) and h~(x)
(dashed line) in the bag model; h2(x) (solid line) in the bag and

its twist-3 part (dot-dashed line).
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new and dynamical information in hz(x). Like gz(x),
h2(x) is hard to model without insight into the quark-
gluon correlations which determine hz(x). In Fig. 1 we
show h2(x) and hz(x) in a bag model where boundary
effects replace explicit gluon degrees of freedom [7].

Now, we quote the lepton pair-production asymmetries
from the collision of polarized nucleons through order
Q '. For simplicity, we consider only tree processes and
ignore all radiative corrections which, though important,
do not change the basic structure of the cross section. To
study twist 3 it is necessary to include explicit gluon
effects, but they do not introduce any new distribution
functions into the cross section. Their only role is to
render the first-order tree diagram gauge invariant.
Some technical details and further discussion can be
found in Ref. [11]. The differential cross section in the
center of mass of the lepton pair is

, (S,, f,i )W;—, , (16)d'Qdn 2 2x 'sQ'
where l is the unit vector in the lepton-momentum direc-
tion and Q is the squared mass of the lepton pair. The
hadron tensor W„,is defined by

g.e.'g f (x)gf (y)
+LL P.e.'f'(x)f'(y)

(i9)

Here x and y are the longitudinal momentum fractions of
the annihilating quarks. The sum over a covers all quark
and antiquark flavors. We suppress the beam and target
labels 2 and 8: By convention the structure function
with argument x (y) refers to hadron A (8). For
transverse-transverse collision,

sinecos2$ Roe "i (x)&1(y)
1+cos 0 g, e,f;(x)f;(y)

(20)

where J„is the electromagnetic current and (P~,s~) and
(Pe,se) are momenta and spins of nucleons A and 8, re-
spectively. The results can be simply expressed in terms
of the spin asymmetries defined by

o(sw, sa) —cr(s~, —Sa)
o (Sg,SB)+ o (S~, —Se) '

where —S~ means the spin of nucleon 8 is flipped. For
longitudinal-longitudinal collisions, the spin asymmetry is
well known [12]:

W„,= e'» ~d g(Pgs~Pgsg]J„(0)J,(()~P~sgPesg),
which was first obtained by Ralston and Soper [1]. And

(17)
~

for longitudinal-transverse collision,

2sin28cosp M gaea [gi (x)ygT(y) xhz(x)h~ (y)]
Ai T =

1+cos 8 Q Z.e.'f i (x)f i (y)
(2i)

which is a new result. The asymmetry AzT depends on
both twist-3 structure functions gT(x) and hz(x) and is
down by a factor of M/Q. In deriving (21), we assumed
the factorization is valid at twist-3 level [13].
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