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Isospin relations are used to e1iminate hadronic uncertainties in various CP asymmetries in 8 decays
via b uus, e.g. , B z K . A clean measurement of the angle a of the unitarity triangle is thus made
possible. The magnitudes of the tree and the penguin amplitudes can be measured.
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CP asymmetries in 8 decays into a final CP eigenstate
are free of hadronic uncertainties if a single Cabibbo-
Kobayashi-Maskawa (CKM) combination dominates the
decay process. Within the standard model, most process-
es get contributions from both tree and penguin ampli-
tudes [1]. In b ccs processes (e.g., 8 tire) both
amplitudes carry the same CKM phase (to a very good
approximation); extracting sin(2P) from this asymmetry
is free of hadronic uncertainties [2]. In b uud process-
es (e.g. , 8 tr+tr ) the two amplitudes carry different
CKM phases. It is expected that the contribution from
the penguin amplitude is small (a few percent), but it
could be larger than the naive expectation if the matrix
element for the penguin operator is enhanced; extracting
sin(2a) from this asymmetry may suffer from hadronic
uncertainties if this is indeed the case. In b uus pro-
cesses (e.g., 8 tr Kz) the two amplitudes carry dif-
ferent CKM phases and are expected to be of the same
order of magnitude; it is usually stated that one cannot
cleanly extract values of CKM parameters from this
asymmetry.

Recently, Gronau and London [3] have shown how to
separate the CKM phase of the tree-level 8 zx process
from any penguin contamination. This is done by means
of isospin analysis of various (charged and neutral) 8 de-
cays into nz. The three relevant amplitudes fulfill a tri-
angle relation: Once their magnitudes are known, the rel-
ative phases among them can be calculated. This will al-
low a determination of a completely free of hadronic un-
certainties, independent of how large the penguin ampli-
tude is.

In this work, we study the CP asymmetry in 8
z K~. As mentioned above, without isospin analysis

this mode does not provide a clean theoretical determina-
tion of CKM parameters. Moreover, the analysis of Ref.
[3] applies to a case where isospin relates three ampli-
tudes and cannot be applied in a straightforward way to
the zK mode, where isospin gives a relation among four
amplitudes. However, we show that there is still a way to
use isospin relations in order to cleanly measure CKM
parameters (specifically, the angle a of the unitarity tri-

angle) from CP asymmetries in various b uus modes.
Finally, we explain how to measure the magnitude of the
tree and penguin amplitudes.

Unfortunately, the branching ratio for 8 zK is ex-
pected to be small; unless the penguin contributions are
larger than the standard estimates, it will be dificult
(though not clearly impossible) even with an asymmetric
8 factory of luminosity 3 & 10 cm sec ' to make this
analysis. To be precise, what is needed is to measure a
time-dependent rate for at least one neutral channel (here
we assume 8 tr Ks), as well as integrated rates for all
other (neutral and charged) 8 trK channels. It seems
that only an asymmetric 8 factory can make the neces-
sary time-dependent measurements. Hadronic produc-
tion experiments will have difhculty distinguishing 8d

z Kg from 8, z Kz but may provide useful mea-
surements for charged-8 decay rates. The limiting pre-
cision will be that of the CP asymmetry; the total rates
will be known quite accurately.

To better understand the practicality of these measure-
ments, a comparison with the trtr mode (which measures
the same CKM phase a) is in order. A detailed analysis
of this mode [2] shows that an asymmetric 8 factory
operating at the Y(4S) will cover a large part of the al-
lowed range for sin(2a) with the trtr mode. Relative to
nz, we expect a factor-of-20 reduction in rate for zK, but
this will be partially compensated by good detection
efficiency for Ks. (Note that to study pre, good K
detection is necessary and so will certainly be part of any
detector design. ) So it seems reasonable that some use of
the CP asymmetry in the nK mode can be made, though
a smaller range of values of a will be accessible. More-
over, one can easily imagine situations where these mea-
surements wi11 actually be practical and useful: Suppose
that the penguin is enhanced by a factor of a few over
naive estimates. For zz, this will not change the rate
significantly, but isospin analysis will become essential.
For zK it would be a blessing: A factor-of-3 enhance-
ment in the matrix element could mean a factor-of-10
enhancement in rate, making this mode competitive with
the n~ mode. Another possible situation is that penguins
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are not enhanced, but that a —x/2. Then the xx mode
has zero asymmetry [sin(2a) —0], and the bound will be
constrained by systematics and statistics. Ho~ever, the
zK mode could still have a very large asymmetry, and the
deduction of a=@/2 will have completely diA'erent sys-
tematics, and so could be very useful.

8+ and 8 decay into final ~K states via the quark
subprocess b uus. The Hamiltonian acting on the 8
can be written

/i'tB) =Aot0, 0)+A i t1,0) .

Let us define a decay amplitude A;,. by

coeScients:

w—= ( —, ) ' 'Ao, U= —,
' (2A i'+A

i ), v—= —,
' (A i' —A i ),

(4)

where 2 and A;" incorporate the change in magnitude as
well as the strong-phase-shift corrections to 3; due to
hadronization and rescattering eA'ects for fina I =

& and
I =

2 states, respectively.
Similarly, 8 and 8 decay into final nK states via

b uus. Here, the various amplitudes are given by

Aoi=U —W, (-, )'"A„=V+W,

A,, =—&~'K&t e t 8) . (2) Aop=U+W, ( —,
' )' A —i =V —W,

(s)

Then the four amplitudes for 8+ and 8 decays into final
zK states can be written as

Api =U —W, ( 2 ) 'i Aip=v+ W,
(3)

A„=U+w, (-,')'~'A, =v —w.

The amplitudes U, V, and W absorb Clebsch-Gordan

where A;~ is the amplitude for the CP-conjugated process
of A;, , e.g., Aio corresponds to 8 x K . The am-
plitudes U, V, and W carry weak phases opposite to (but
strong phases identical to) those of U, V, and W, respec-
tively.

Measuring the eight time-integrated decay rates gives
the various IA jt and IAiq I The time-dependent rate for
tagging one 8 at t =0 and observing the other one to de-
cay into x Kq at time t is (see Gronau [I])

I (8 (r) x Ks) = —,
' e '

[tAoot [I — cso(hm )r]+tAoot [I+cos(hmt)]+2aootAoot sin(hmt)t,

I (8 (t) z K~) = —,
' e '

{tAoot [I+cos(Am t)]+ tAoot [I —cos(hm t)] —2aootAoot sin(hm t)j,
where —~ ~ t ~ ~. The CP asymmetry is given by

2i QT——2 (y +i'„+y ) e
aoo = Im, e

&oo
(7) 2i QT—

2;~ =e

The phases pM and pir are the CKM phases in the mixing
amplitudes for neutral 8 and neutral K, respectively
[PM =arg(~idvlb), i'm =arg(V,*, V,d)]. The phase &T is

the CKM phase in the tree diagram [pT =arg(V„*bV„,)].
If b uiis processes were dominated by tree diagrams

(or if pp, the CKM phase in the penguin diagram,
equaled PT), A;J would be e

'
'A;~, and the asymmetry in

Eq. (7) would reduce to sin[2(p~+px. +pT)] =sin(2a).
This type of situation holds in b ccs and, probably,
b uud processes, which is the reason for the cleanliness
in their theoretical interpretation. However, this is not
the actual case for b uus processes since (i) the
penguin diagram depends on pp =arg(V, i, V„), so that
ppWQT, and (ii) while the penguin diagram is higher or-
der in couplings [an (a~/12m)ln(m, /mi, ) —0.02 suppres-
sion], the tree diagram is CKM suppressed [a (sinOc)
x V„b/V, i, —0.02 suppressionl. Thus the two amplitudes
are expected to be of the same order of magnitude. In
general, then, e

'
'Aoo/Aoo&I and needs to be deter-

mined before a can be calculated from (7). This is done
through isospin analysis, as we show below.

For this analysis it is convenient to define new quanti-

Note that the ratios A;~/A;1 are independent of phase con-
ventions. What we need in order to extract a from the
asymmetry in (7) is then Aoo/Aop. Similarly, we define

U—=e 'U, V—:e 'V, 8'—=e '8'.

Let us examine the amplitudes in Eqs. (3) and (S). They
fulfill quadrilateral relations:

A pi + ( —,
' ) '~ A i p

=A Oii+ ( —,
' ) '~ A —i,

(10)
Aoi+( —,

' ) '~ Aip=Aop+( —,
' )'~ A —i.

This means that the four 8;~'s form a quadrilateral in the
complex plane, and similarly the four A;~'s. The various
decay rates give all eight sides of these two quadrilaterals.
However, knowing the lengths of the sides of a quadrila-
teral does not determine its angles. In 8 zz decays,
there are three (instead of four) amplitudes. The six de-
cay rates give the six sides of two triangles and all angles
are consequently determined. It is obvious that the same
method cannot be extended in a straightforward way to
the present case.

However, there is an additional important piece of in-
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formation. The penguin operator is purely I =0 and, con-
sequently, only tree diagrams contribute to I=1 transi-
tions. This gives the following relations among the U and
V amplitudes [which are pure I = 1, as can be seen from
their definition in Eq. (4)]:

U=U, V=V.

Instead of Eq. (5) we can now use

AQQ

AQQ

. ~2
w

A+

Ao =U —W, ( —, )'i 2 o=V+W,

~..=U+ W, (-,' ) '"~,= V —W.
(12)

This implies the following two relations between the two
quadrilaterals of Eq. (10) (see Fig. 1).

(i) One of the two diagonals is common to the two qua-
d rilaterals:

App+ ( —,
' ) 'i A —+ =capp+ ( 2 ) 'i 4 —+ =U+ V.

~V~ 1

A, p

A+o

FIG. 1. The two quadrilaterals of Eq. (10). Note that U+ V
is a common diagonal, while the noncommon diagonals bisect
each other.

(ii) The other (noncommon) diagonals bisect each other:

App+Ap+ =App+Ap+ =2U. (i4)

The crucial point is that knowing the eight sides of two quadrilaterals that fulfill conditions (i) and (ii) does deter-
mine (up to a twofold discrete ambiguity) all the angles. To demonstrate that, we write the equation for the length of
the common diagonal, IU+ Vl:

"(I&ool I& —+/~21 IU+ VI)+&(I&o+I I&+o/~21 IU+ VI)

=it(l&o I, I& —+/~21, IU+ VI)+" (l&o+I, I&+o/~&I, IU+ VI), (15)

where h(a, b, c)/2c is (up to sign ambiguity) the height of
a triangle of basis c and sides a and b:

[it(~ b c)]2 2(&2b2+b2c2+c2a2) &4 b4 c4

Obviously, once IU+ Vl is known, the angles within each
quadrilateral are determined. In particular, App/Hop is
determined, allowing us to derive a=p~+p~+pT from
the CP asymmetry in B z ICs [Eq. (7)].

The above analysis can be applied in the same way to
additional hadronic Anal states for b ups processes
where the nonstrange meson is an isovector: pK~, zK*,
and others. Note that, unlike the case of a very small
penguin contribution, the asymmetries in these various
modes are not expected to be all equal. The reason is
that Hop/App depends on strong-interaction effects and is,
therefore, different for different modes. However, a sin-
gle value of a should, of course, arise from all asym-
metries.

We note that there is a discrete twofold ambiguity in
the determination of A po/A pp, which corresponds to
rejecting both quadrilaterals along the U+ V axis. This
will give two solutions, one corresponding to the correct
App/App and the other to its conjugate. Measuring the
asymmetries in various hadronic modes will resolve the
ambiguity: Only the true values of App/App will give a

consistent solution for a. (This ambiguity is not to be
confused with another discrete ambiguity which persists
even in the case of Apo/App =1 [4].)

An isospin analysis carries useful information besides
the CP-violating CKM phases. Assuming the standard
model, we can actually extract measures of the tree and
the penguin contribution to W [5]. To show this, we use

W=Ppexp[i(6p~/7+Pp)]+ Tpexp[i(ST, »+PT)],

W =Poexpli (bp„, —Pp)]+ Toexp[i (hT„, —PT)],
where Pp and Tp denote penguin and tree diagrams, re-
spectively, and 8 and p denote strong and weak phases,
respectively. We obtain the following relations:

Iw-we"'" "'I
[2[1 —cos2(pT —Pp)]] '

(18)
Iw —wlPp=

[2[1 —cos2(pT —
tt )]] '

The quantities 8'and 8'can be determined from the iso-
spin analysis. Within the standard model the penguin
amplitude depends on the CKM combination V,b V„.
Consequently, pT —pp is the angle y of the unitarity tri-
angle, which can be directly measured in CP asymmetries
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in 8, decays or calculated from CP asymmetries in Bd de-
cays. We conclude that the full isospin analysis allows a
determination of Pp and Tp, and is, therefore, useful not
only for our understanding of CP violation but also of ha-
dronic physics. (In the case of 8 xx, comparing the
penguin and tree contributions to I=

2 transitions is
even simpler. There, pT

—
(8)p =pT+pM =a, measured by

the CP asymmetry in the nn mode itself. )
In conclusion, CP asymmetries in 8 z Kz suff'er

from hadronic uncertainties because they get comparable
contributions from penguin and tree diagrams. The sim-
ple isospin analysis of Ref. [3] does not help because here
the amplitudes fulfill quadrilateral relations. However,
because of the isospin properties of the penguin and tree.
operators, there is still a way to use isospin relations in
order to eliminate the hadronic uncertainties and cleanly
measure the angle a of the unitarity triangle. The same
analysis can be applied to other hadronic modes of the
b uus process. The list of CP asymmetries in 8 de-
cays which yield to a clean theoretical interpretation is
thus significantly expanded. Experimental application of
this analysis will require a high integrated luminosity
from an asymmetric 8 factory.
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