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Importance of Structural Instability to High-Temperature Superconductivity
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The orthorhombic-tetragonal structural phase transition of Lap — Sr Cu04 is quantitatively analyzed
as a function of composition x within an anharmonic electron-phonon interaction model. The correct
temperature dependence of the soft mode and the elastic constant c66 is obtained. The double-well po-
tential in the electron-phonon interaction is derived self-consistently and found to vary strongly with x.
In the vicinity of the superconducting transition temperature T, electron-two-phonon interactions dom-

inate the harmonic ones which may explain the high T, 's observed.
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H =g4+[q;n; (q;+n; )+q; n;tn;t], (2)

where the p; and q; are the phonon momentum and dis-

The origin of the pairing mechanism in high-tempera-
ture superconductors [1] is still an open problem. Includ-
ing the perovskites Bai,K, Bi03 [2] and BaPbi —„Bi,03
[3] in the class of "high-temperature" superconductors
that show BCS-like properties would suggest that a
phonon-mediated mechanism may also be responsible for
the layered superconducting compounds with much high-
er T, 's. In this work we derive an electron-phonon in-

teraction model that quantitatively describes the phonon-
mediated structural phase transition observed in Laq —„-
Sr Cu04. This transition is analyzed on the basis of a lo-
cal p potential in the electron-phonon interaction (not
nonlinear phonon-phonon interaction) [4] which induces
the substantial structural instability observed in all high-

T, compounds [5]. It will be shown that this electron-
phonon-induced structural instability requires an exten-
sion of the Migdal theorem [6], leading to a BCS-type su-

perconducting state, where the harmonic electron-phonon
interaction is enhanced by electron-density-two-phonon
couplings. (For example, in YBa2Cu307, the high dielec-
tric constant and high pyroelectric coefticients point to an
incipient dipolar instability. )

The model Hamiltonian we start with represents a
combination of two diITerent electron-phonon models
[7,8] extended by higher-order interaction terms H

H=g[p;/2M+ —,
'

gqqP+ 2 g4q; + —,
' K(q; —

i
—q;) ]

placement coordinates, c;1 and c; are electron creation
and annihilation operators with n; =g c;t c;, and k and
k represent on-site and intersite couplings of phonon coor-
dinates with the electron density. The fourth-order term
in the phonon coordinates q; is a consequence of the
nonlinear electron-phonon interaction potential [9,10].
Higher-order interactions in the electron density have
been omitted. The potential in the q; is equivalent to
those used by Hardy and Flocken, Plakida and co-
workers, and various other groups [11]. However, in con-
trast to those models, and an important consequence of
this electron-phonon interaction potential, are the terms
appearing in Eq. (2) describing electron-density-two-
phonon interactions. The Migdal theorem, where high-
er-order perturbation corrections [12] in the electron-
phonon interaction are considered on the basis of the
Frohlich Hamiltonian [8], which resembles (1) with

neglect of H, is not applicable to our Hamiltonian as
the higher-order interactions do not result from perturba-
tion methods but from the p potential in the electron-
phonon interaction. This means that X&g4. Microscopi-
cally the Hamiltonian (1) has its origin in the instability
of the oxygen 2p configuration [13],which, due to small
phonon displacements, may easily change its character
from bound to unbound thus inducing a polarizability ca-
tastrophe. The electronic configuration 2p of 0 is

only stable in a crystal where Coulomb interactions with
the surrounding ions provide the ionic stability. In an iso-
tropic environment the p,p~,p, orbitals are also isotro-
pic. Anisotropy and covalency strongly favor the tenden-
cy of an elliptic ground state. For example, in YBa2-
Cu307 the p, orbitals of the apical oxygen ion O(4) are
strongly delocalized towards the Cu02 planes which then
provide a mechanism for the pairwise attraction of holes
in the planes [10,14].

We note also that our Hamiltonian may change the
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picture of bipolaron formation [15) (and especially large
bipolaron formation [16]) drastically because the higher-
order electron-phonon interaction terms of 8 are usu-
ally neglected. Furthermore, early calculations of Hui
and Allen [17], using a Hamiltonian with g4 terms in the
phonon coordinate q; only, did not lead to an enhance-
ment of the electron-phonon coupling. The calculations
by Hardy and Flocken, Plakida, and others [11] start
from a double-well potential in the phonon coordinates q;,
and an enhancement was found, yet not large enough to
explain high T, . Our analysis is based on the classical
equivalent of Hamiltonian (1), and the procedures of Enz
[18] and Pytte and Feder [19] are used. The classical
Hamiltonian is given by

r

H =g~ + V(w;) +g g V~u;u~ (3)
J

with

V(w;)= w;+ w;
g2 2 g4 4

and w; =u; —v;, where u; and v; are the classical core and
shell displacement coordinates and V~ represents the ion-
ic interaction potential with neighboring cells.

Within the framework of the self-consistent phonon ap-
proximation (SPA), which corresponds to an expansion in
the first cumulant of the relative electron-ion displace-
ment ~;, the structural phase transition of La ~ 85-
Sro t5Cu04 is quantitatively described. A comparison of

inelastic-neutron-scattering data with model calculations
is shown in Fig. 1. The softening of the acoustic branch
at the zone boundary with decreasing temperature is
self-consistently calculated (Fig. 1). Together with the
softening of the zone-boundary frequency the elastic con-
stant c66 softens [21] and shows perfect Curie-Weiss be-
havior, which also results in quantitative agreement with
the model.

To find the temperature dependence of the soft mode
related to the structural transition for other compositions
and thus other T„resonant ultrasound spectroscopy
(RUS) [22] was used to confirm a universal behavior of
the softening of c66 and thus of the related soft mode.
Because previous RUS studies [21] of a well-character-
ized single crystal of La] 86Sro]4Cu04 established that
only c66 softened at T„we could, for this work, use an
unoriented flake from a very small single crystal of Cu-0
fiux-grown La~ 9oSro ~oCu04 [23] in the RUS system.
Any observed temperature dependence could then be tak-
en to be that of c66. Again a Curie-Weiss-like tempera-
ture dependence of c66 was obtained. Thus the power law
(exponent of unity) is correctly determined. The confir-
mation of a universal temperature dependence of the soft
mode as depicted in Fig. 2 (where the new results on c66
are inserted) enabled the self-consistent determination of
the relevant electron-phonon couplings g2, g4 as a func-
tion of T, and x. Note that both quantities are nonlinear-
ly dependent on x and T, (Fig. 3). Also shown in Fig. 2
is the predicted temperature dependence of c66, derived
from dru/dq for q 0. It displays the same softening for
other T, .

The electron-phonon interaction potential derived self-
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FIG. 1. Comparison of theoretical (dashed lines) and experi-
mental dispersion curves (taken from Ref. [201) at T=573 K
(open circles), T =473 K (open squares), and T =432 K (open
triangles). Solid circles are temperature-independent data
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FIG. 2. Calculated temperature dependence of the soft
zone-boundary mode for five diferent T, . The solid straight
line corresponds to the calculated temperature dependence corn-
pared to experimental data (solid circles, Ref. [201) and the re-
lated softening of the elastic constant c66 (dashed line), while
dash-dotted lines represent extrapolations of this temperature
dependence for other T, as confirmed by RUS methods. Open
squares and stars correspond to new experimental data.
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