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Magnetic-Fluid Oscillator: Observation of Nonlinear Period Doubling
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The peak pattern of a magnetic fluid, in both a vertical dc and an additional vertical ac magnetic field,
behaves as an oscillator. Using the ac-dc field ratio as a control parameter, we study the dynamics of
this oscillator. For low values, the peaks oscillate at the ac field frequency, whereas for a large enough
value the oscillation is subharmonic (period doubling). The phase diagram is interpreted in terms of a
bounded parametric resonance driven by the nonlinearity of the oscillator. In 2D this transition occurs
with symmetry breaking from a triangular to a square pattern.

PACS numbers: 47.20.—k, 47.35.+i, 75.50.Mm

Understanding the routes to turbulence and chaos!'™

requires well-defined experimental systems with con-
venient control parameters. The different classes of
physical systems include Rayleigh-Bénard convection*®
or Taylor-Couette experiments,” Faraday’s experi-
ment®'® (parametric generation of surface waves on a
horizontal layer of fluid vertically vibrated), sand pack
vibrations,®!""!2 and dielectric'® or magnetic fluid'*'3 in
an alternating electric or magnetic field. The subhar-
monic response of these systems allows observation of
temporal and spatiotemporal chaos.'®!” The subhar-
monic parametric excitation is driven by the harmonic
time variation of one of the oscillator parameters: This
excitation generally yields a first-order transition with
threshold and hysteresis from a nonoscillating state to a
subharmonic oscillation. As noticed a century ago,'8
subharmonic response can be also achieved through non-
linearities of the oscillator (the drive appears as an exter-
nal force), in which case a second-order transition (Hopf
bifurcation) occurs between a harmonic oscillation and a
subharmonic one.

In this Letter, we report the first observation of the
subharmonic response of a driven nonlinear magnetic-
fluid oscillator. For a large enough applied vertical con-
stant magnetic field, the free surface of a magnetic fluid
becomes unstable, yielding a regular peak pattern.'®?°
This is our basic oscillator. We study the dynamic
response of this peak pattern to an alternating vertical
magnetic field added to the previous direct one; the ratio
between the two fields is the control parameter of the ex-
periment. The phase diagram is determined in a 1D
geometry. Strikingly, the 2D version of the experiment
shows a symmetry breaking, at the transition, from a tri-
angular to a square pattern.

The magnetic fluid is a ferroflui a colloidal sus-
pension of magnetic grains stabilized by screened elec-
trostatic repulsion.?® Its magnetic behavior is paramag-
netic with initial relative permeability u,=7. The
characteristics of the fluid are density p=1.5x103
kgm ~3 's~1 and interfacial

d’2l,22

, viscosity n=10"2 kgm ~'s

tension y=30 mJm ~? against air. In order to force a

one-dimensional peak pattern, the fluid is contained in a
thin (0.5 cm) and long (10 cm) groove of V cross sec-
tion, made of Teflon nonwetted by the ferrofluid. The
vessel is in between two coils in the Helmholtz position
(field homogeneity better than 1% over the groove
length). Increasing the vertical continuous magnetic
field from zero, the magnetic-fluid interface remains flat
until we reach a critical magnetization of the fluid,
M.=5.5 kAm ™!, at which point a line of equidistant
peaks appear (Fig. 1). The height of the peaks is of the
order of the critical wavelength A, =0.9 cm. We have al-
ready demonstrated?® that this transition is first order.
The measured values of M. and A. are in reasonable
agreement with the theoretical ones computed from the
p, tr, and y values.!® We keep the static magnetic field
constant at My=8 kAm ™', well above M.; the row of
peaks is definitively set up: We will follow the time
dependence of this regular peak pattern as forced by an
additional small vertical alternating magnetic field of
frequency Q [corresponding magnetization mgcos(Qr),
total applied magnetization My+mgcos(Qr)]. For
small values of the control parameter, m =mo/M,
(m <0.1), the row of peaks oscillates with the applied ©
frequency, all peaks vibrating in phase. The larger the
value of m, the larger the amplitude a of vibration.
These features have been observed over a wide range of
frequency (@ from 1 to 12 Hz). The peak pattern
behaves as an oscillator, the characteristics of which can
be estimated from the amplitude of oscillation versus fre-
quency at a given m value (m <0.1). The resonance
frequency in this linear regime coincides with the natural
frequency obtained by shaking the vessel mechanically or
with a field and letting it relax naturally at fixed M, and
m=0. The level of superharmonic (20) oscillation
leads to the first anharmonicity.?* For a given frequency
of this wideband oscillator, as we increase the control pa-
rameter m, the oscillation of the peaks progressively loses
its regularity; peaks neither vibrate in phase with each
other nor with the Q frequency. This dynamics is diffi-

50 © 1991 The American Physical Society



VOLUME 67, NUMBER 1

PHYSICAL REVIEW LETTERS

1 JULY 1991

FIG. 1. Side views of peak rows in the period-doubling re-
gime; m=0.2, Q/2x=5 Hz (T =0.2 s). From top to bottom,
time ¢ =0, 0.08, 0.12, 0.20, 0.28, 0.32, and 0.4 s (=27). The
white line is a video frame. The wavelength A =0.9 cm.

cult to analyze. As we further increase m, we again get
a regular pattern but at a period 27 (frequency Q/2).
In Fig. 1, the excitation frequency is @ =5 Hz (T =0.2
s) and m =0.2. From top to bottom in the four first pic-
tures, the initial peak row decreases, vanishes, and is re-
placed by a peak row for which peak positions are in pre-
vious valleys and vice versa. At time 7 =0.2 s (middle)
the peak row is exactly out of phase with the top picture.
As time increases further the system evolves to a pattern
analogous to the top one; a complete cycle takes 0.4
s=2T (frequency 2.5 Hz). We have definitively ob-
served a subharmonic temporal oscillation. In Fig. 2, we
plot the experimental phase diagram, control parameter
m versus excitation frequency Q. The circles (close to
the line) are the upper limit of m of the harmonic oscil-
lation (excitation T, oscillation 7T') whereas, the crosses
are the lower bound of the subharmonic oscillation (exci-
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FIG. 2. Phase diagram of the peak dynamics. The control
parameter m is the ratio of the amplitude of the alternating ap-
plied magnetic field to the dc field; Q/2x is the frequency. Cir-
cles are the upper bound of harmonic oscillation, the line is the
theoretical limit, and crosses denote the lower bound of the
subharmonic regime (Fig. 1).

tation T, oscillation 27); in the region in between, the
two modes compete leading to a kind of beating. The
saliant features of our experiment, harmonic and subhar-
monic temporal oscillation with a soft transition between
the two regimes, are reminiscent of a second-order sub-
harmonic response through the nonlinearities of the os-
cillator. :

In order to try to account for the phase diagram, we
derive the oscillator evolution equation from a very sim-
ple expression of the energy of the peak pattern. Let us
focus on a basic spatial cell of the pattern consisting of
the magnetic-fluid volume in between the white line and
the nearest (left or right) valley in the top panel of Fig. 1
(half a spatial wavelength). For such an elementary
volume, using simple dimensional arguments, we get?’
the variation of energy E from a flat interface to a peak
of height p:

E=Tp>’—H?p’+Gp*, (1)

where the three parameters I'~y, G~pg, and H?
~uoM? include geometrical factors depending on the
peak shape (close to a cone of 45° angle). Such a simple
analysis was good enough to account for the hysteresis of
the first-order static transition of the peak.?° Minimiza-
tion of (1) at a given applied magnetic field (correspond-
ing to a magnetization M) gives the peak height po
(2 —3H?po+4Gpg =0). Considering a small magneti-
zation, mocos(Q¢), added to My, we can expand the en-
ergy (1) in the vicinity of (My,po); from Euler and
Lagrange, we derive the time-dependent equation for
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peak height variations dp =p — po:
J+20y+wdy =fmcos(Qt) —ay?—py3, (2)

where y =8p/po and the overdot denotes time derivative.
The forcing f involves the derivative of F against M.
The resonance frequency wo and the two anharmonicities
(e and B) involve respectively second, third, and fourth
derivatives of E against p. All derivatives are taken at
(Mo,po); A is the viscous damping and m =mo/M the
control parameter.

Equation (2) describes a nonlinear forced oscillator. 2
From the experiment, the harmonic and superharmon-
ic responses yield the characteristics of our magnetic-
field oscillator: wo/27=5.5+1 Hz, A=(0.3%£0.1)wy,
f=(0.5%0.1)w$, and a=(15=* 5)wd; an estimate of B
is B=(10%+5)wé. With such an experimental deter-
mination of the parameters involved in Eq. (2), we get
rid of questionable calculations carried out from Eq. (1).
Equation (2) allows subharmonic oscillation, but, as op-
posed to classical parametric resonance excitation,
governed by the nonlinearity (Duffin instead of Mathieu
equation®'®). Following the discussion of (2) in the
classical textbook,?* but including the effect of large
damping, the first-order (y =y "+ @+ - .) solutions
of (2) are harmonic oscillations, y "’ =a cos(Q¢) (an ap-
pro?riate definition of ¢ eliminates the phase factors in
y(' and y® in the regime where there are clean har-
monic or subharmonic responses; the mixed regime is, of
course, more complex), the amplitude of which is given
through

al(wd—a?)2+ar20?1"2=fm. 3)

In the time-evolution equation of the second-order
term y @ the first anharmonicity contributes as
2ay @gcos(0r) which imitates classical parametric ex-
citation with an intensity # =2aa/w§: Above a threshold
(h > 4r/wy), at which excitation overcomes viscous loss,
a subharmonic oscillation, y ® =bcos(Q1/2), is allowed
to develop with a well-defined amplitude b [because of
nonlinearities, as b increases, the oscillator resonance
frequency shifts from wg to wo+ xb 2, x(wo,a,ﬁ),24 lead-
ing to a saturation of b]. b is one of the roots of

[(wo+xb)*— 0%/412+220%2=0a%a>. 4)

At a given frequency Q, as m (and then a) is increased,
b increases monotonously from zero at the threshold;
subharmonic response results from bifurcation from the
harmonic one: The T-2T transition is a Hopf bifurca-
tion. The marginal curve of the transition (b=0) is
computed from (3) and (4). We get the continuous line
drawn in Fig. 2 close to the experimental data; this
surprisingly good fit is obtained with the only adjustable
parameter, on the vertical axis, af=5.0w6‘, to be com-
pared to the value af ~8w{ that we get from the mea-
sured characteristics of our magnetic-field oscillator.
(We note that the error bars in the estimate of & and f
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FIG. 3. Top view of the subharmonic 2D square peak pat-
tern; m=0.2, @ =5 Hz. Top, =0 or 2T; bottom, t =7 =0.2
s. White lines and crosses are video frames.

are such that the two values are quite consistent with
each other.) This is, indeed, a strong support to our
theoretical interpretation. We have to notice that the
large damping is responsible for the minimum of this
curve being in the vicinity of wp. If our small-amplitude
approach (b~0) is well suited for determining the har-
monic upper limit of the phase diagram, the lower bound
of the subharmonic zone requires a much more compli-
cated analysis which has not yet been achieved.

Even though it demonstrates the nature of the subhar-
monic transition, the one-dimensional geometry inhibits
any kind of geometric effects. For that purpose we have
also used a large rectangular vessel. Above a critical
static magnetization, we do observe the classical triangu-
lar pattern of peaks.!” This triangular geometry is
chosen by the system for harmonic oscillation when an
alternating magnetization is added to the constant one.
For large enough m the spatial structure is no longer
well defined, whereas increasing m further yields subhar-
monic (period 27) oscillation but with a square pattern
(Fig. 3: topis ¢t =0 or 27, and bottom, ¢t =T the bottom
pattern is in spatial phase opposition with the top pic-
ture). The spatial periodicity of nearest-neighbor peaks
is 1.5 cm in both directions, leading to a wavelength
A~1.0 cm analogous to the one of the 1D peak row. To
account for the symmetry breaking from a T triangular
pattern to a 27 square one, we first have to notice that
the triangular lattice is the more stable at the static tran-
sition threshold, but could become metastable against
the square one;?’ this transition has been observed under
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unsteady conditions.?® Moreover, a 2T-oscillation re-

gime requires the fluid to flow easily from a structure
(t+ =0 or t =2T, top panels of Fig. 1 or 3) to one of oppo-
site phase (=T, Fig. 1 middle or Fig. 3 bottom). The
simplest lattice with two sublattices (bipartite) is the
square lattice. Extensions of this work to annular
geometry (one-dimensional system with periodic bound-
ary conditions) and 2D geometry are still in progress.

The peak pattern of a magnetic-fluid interface, under
a constant vertical magnetic field, behaves as an oscilla-
tor when an additional vertical alternating field is ap-
plied. For low values of the control parameter, the peaks
oscillate in phase at the excitation frequency. For large
values the oscillation is subharmonic (period of twice the
excitation period). In two dimensions the harmonic os-
cillation occurs in a triangular pattern whereas the
subharmonic one occurs in a square lattice. The phase
diagram and the main features of the experiment support
the interpretation of a second-order transition from har-
monic to subharmonic response achieved through the
nonlinearities of the oscillator.
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