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Oscillations of the Exchange in Magnetic Multilayers as an Analog of de Haas-van Alphen Effect
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A theory of oscillations in the exchange coupling between two transition-metal ferromagnets separated
by a nonmagnetic transition-metal spacer is developed for a one-band model. A close analogy between
oscillations in the exchange coupling and de Haas-van Alphen oscillations is established and exploited to
show that the period, asymptotic decay, and temperature dependence of the oscillations are determined

by properties of the Fermi surface in the spacer layer. The theory describes many features of the oscilla-
tions in the exchange coupling observed recently in Co/Ru, Co/Cr, and Fe/Cr superlattices.

PACS numbers: 75.70.Fr, 75.30.Et, 75.50.Rr

Antiferromagnetic coupling between the iron layers in
Fe/Cr/Fe sandwiches and superlattices has been observed
by several experimental techniques [1-3]. Recently, Par-
kin, More, and Roche [4] reported oscillations in the ex-
change coupling and magnetoresistance as a function of
the thickness of the nonmagnetic spacer layer in Co/Ru,
Co/Cr, and Fe/Cr superlattices. In this paper we de-
scribe a generalization of our previous theory [5] which
shows how a one-band model can produce the following
experimental features of the oscillations in the exchange
coupling: (i) long oscillation period of the order of 10 in-
teratomic distances, (ii) variable sign of the coupling for
small thicknesses of the spacer layer, (iii) large overall
amplitude of the coupling and an asymptotic decrease
proportional to the inverse square of the spacer thickness,
(iv) strong temperature dependence of the exchange cou-
pling on a scale =-100 K.

In the previous paper [5] we proposed and investigated
a specific simple model of the exchange coupling based on
spatial confinement of d holes in the spacer layer. The
model gave a good account of features (i)-(iii) assuming
a simple cubic tight-binding band structure for the spacer
layer and (100) orientation of the layers. In this paper
using an analogy with the de Haas-van Alphen (dHvA)
eAect we develop a general theory of the exchange cou-
pling in the asymptotic limit of a large thickness of the
spacer layer. The period, asymptotic decay, and tempera-
ture dependence of the oscillations in the exchange cou-
pling are shown to be determined by properties of the
Fermi surface in the spacer layer. The theory is valid for
arbitrary band and arbitrary orientation of the layers. It
leads to an RKKY-like coupling in which the appearance
of certain long-period oscillations is due entirely to the
fact that the spacer thickness is an integral number of in-
terlayer spacings.

To obtain the exchange coupling we calculate the
difI'erence in energy between parallel and antiparallel
orientations of the magnetic moments of two infinitely
thick magnetic layers separated by a nonmagnetic spacer
of N —1 atomic planes. The ferromagnetic metal is as-
sumed to have a full majority-spin d band and a partially
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FIG. l. Schematic plots of the densities of holes p' (solid
curve) and p ~ (dashed curve) in a sandwich for (a) ferromag-
netic and (b) antiferromagnetic alignments of the magnetic lay-
ers. Insets: The densities of states for each spin Nt(E), N~(E)
in each region, the vertical axis being drawn at the Fermi level.

occupied minority-spin d band. The nonmagnetic metal
has equal numbers of holes in each spin subband. The
spin subbands in the ferromagnetic and nonmagnetic
spacer layers, together with the hole densities pt, p~, are
shown schematically in Figs. 1(a) and 1(b) for the paral-
lel and antiparallel orientations of the layer moments.
For simplicity, we assume that the number of d holes per
atom of each spin in the bulk nonmagnetic metal is equal
to the number of holes in the bulk ferromagnetic metal.
The basic mechanism we propose for exchange coupling
does not depend on this precise condition. However, it is
a reasonable approximation to the actual situation in Co/
Ru, Co/Cr, and Fe/Cr systems.

It is clear from Fig. 1 that deviations from bulk hole
densities occur in the spacer layer near the interfaces
with the ferromagnetic layers. For the parallel con-
figuration, Fig. 1(a), both interface effects occur in the
down-spin hole density and, therefore, interfere with each
other. In fact, because down-spin holes are completely
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0 (N —1) =E(N —1) EFn(N —1),— (2)

confined in the spacer layer by the exchange potential,
the interference eff'ect is associated with size quantization
of their energy. In the antiparallel configuration, the in-
terface eA'ects at each end of the spacer layer occur in op-
posite spin densities and no interference takes place. The
up-spin holes are now confined in the half space to the
left of the second interface and the down-spin holes in the
half space to the right of the first interface. It follows
that there is a constant surface energy associated with the
confinement in the antiferromagnetic configuration which
is independent of the spacer thickness. The exchange
coupling between the ferromagnetic layers, which is given

by the diff'erence in energy between the two configura-
tions, is therefore determined entirely by the interference
(size-quantization) eff'ect in the down-spin band of the
spacer layer.

It is assumed in Fig. 1 that the exchange splitting in
the ferromagnetic layers is so large that holes of the
wrong spin are completely excluded. %'e further assume
that holes in the spacer layer are noninteracting. It is
then clear that the energy difference AE(N —1) =Et t—Et~ is given by

AE(N —1)=E(N —1) —E(~), (1)
where E(N —1) is the kinetic energy of the down-spin
holes trapped in the spacer layer of a sandwich with fer-
romagnetically aligned magnetic layers measured relative
to a (N —1)-plane reference state with bulk density.
The energy E(~) is just the constant surface term
present in the antiferromagnetic configuration.

Formally our calculation corresponds to an exact
Hartree-Fock treatment of a Hubbard-like one-band
tight-binding model with on-site interaction U=O in the
spacer layer and with U=~ in the magnetic layers.

To conserve the number of particles overall we must
consider instead of the total energy of holes in the spacer
layer their thermodynamic potential

where EF is the Fermi energy. Both A(N —1) and the
number of holes n (N —1) are again relative to a (N —1)-
plane reference state with bulk density. The change in
energy between the two configurations conserving the
number of particles is, therefore, given by

b.n (N —1) = Q (N —1) —0 (~) .

Following Parkin, More, and Roche [4] we finally define
an exchange coupling constant per unit area for a spacer
layer of N —

1 atomic planes by

J(N 1) =~n—(N 1)/—W . (4)

At finite temperatures the total thermodynamic poten-
tial 0 t,t

= A+ Q„,f is clearly given by

r

p —E(k,r)0„,= —T gin 1+exp
k, r

(5)

where p is the chemical potential, E(k, r) is the hole en-
ergy, k is the wave vector parallel to the sandwich, and
r =1, . . . , N —1 labels the discrete energy levels of holes
(ke =1).

To determine the coupling, we require the dependence
of the thermodynamic potential A of size-quantized holes
in a layer of N —

1 atomic planes on the thickness of the
layer d =Na. This is a familiar problem in the theory of
the de Haas-van Alphen eA'ect where two-dimensional
quantization of the carrier energy in a magnetic field
takes place in a plane perpendicular to the field. In the
present problem, we have one-dimensional quantization
in the direction perpendicular to the sandwich. We can,
therefore, adapt the conventional theory of the de H aas-
van Alphen effect [6].

To evaluate the discrete sum over r in Eq. (5), we ap-
ply the Poisson summation formula

OO OO

g @(r)=2 Re g @(g)e "~dg+ (nonoscillatory term),r=l s=i" 0

where the discrete quantum number r is replaced by a continuous variable (.
It is easy to show that the oscillatory term in the Poisson formula picks from Qt, t precisely the required interference

contribution h, Q. The exchange coupling J is, therefore, given by

1J= —2T Re g „dk dk~„2tr, =i~ 4az &o dgln 1+exp
p —E(k„,ky, j)

T exp 2trisg (7)

where the integral with respect to k, k~ is over the two-
dimensional Brillouin zone (BZ) in the sandwich plane
which is assumed to be parallel to the x-y plane.

To proceed further, we have to make some assumption
about the size quantization of the carrier energy. In [5]
we modeled the spacer layer by a simple cubic tight-
binding band,

e(k„,k~, k, ) = —[cos(k a)+cos(k~a)+cos(k, a)],
494

k, =rtrjNa, r =1,2, . . . , N —1, (9)

where a is the distance between neighboring planes. It is
easy to show that the quantization (9) holds for any sin-

! where the energy is measured in units of the hopping 2!t!.
For such a band and a sandwich parallel to the x-y plane,
the quantization of k, is given by
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gle band and any orientation of the sandwich. Hence E(k„,k~, g) =e(k, k~, 3,"x/Na).
Assuming the quantization (9), integrating in Eq. (7) by parts with respect to 3,", and then passing from integration

over g to integration over the energy s, we obtain

1 +N —
1

2
Re g ds 1+exp(2' .=3 ski 4o J „dk„dk~ exp(2isNak, ), (10)

with k, =k, (a, k„,k~). For large N, the factor exp(2isNak, ) oscillates rapidly and only the regions in the k, -k~ plane
where k, (e, k, k~) is stationary with respect to k, kf contribute to the Brillouin-zone integral. We can, therefore, use
the method of stationary phase to approximate the integral for large N. The remaining energy integral is evaluated as
in the theory of de Haas-van Alphen effect [6], i.e. , only the contribution from the vicinity of e=3u is included. This
leads to the following general asymptotic formula:

Bk, Bk, exp[2isNak, (3u)]JN —
1 = Re

4nNa .= 3 s 2 Bk Bk T ' sinh [2zsNa T Bk,/Be]

i, both second derivatives & 0,
o = ' —i, both derivatives & 0,

1, one derivative & 0, the other & 0.

Here, k, (p) is an extremal radius of the Fermi surface in
the direction perpendicular to the layers (half the caliper
measurement) and all the derivatives in Eq. (11) are
taken at the stationary point k, =k, (3u, k„(3u),k~(3u)).
When there is more than one stationary point the contri-
butions of all such points have to be included in Eq. (11).

The consequences of the asymptotic formula for J(N)
are the following:

(i) The period of oscillations in the exchange coupling
is determined by the factor exp[2iNak, (p)]. Clearly,
owing to the discrete thickness Na of the spacer layer,
k, (p) may be replaced by k, (p) —x/a. Therefore, long
periods are obtained either when the radius k, (3u) is
small or when the Fermi surface approaches the zone
boundary at z/a so that k, (p) —x/a is small.

(ii) The amplitude contains a factor determined by the
curvature of the Fermi surface at its extremal points.

(iii) The temperature dependence of the oscillations is
governed by the velocity of carriers at the extremal
points.

(iv) The asymptotic decay at T=O is proportional to
1/N'

To make contact with our model calculation [5), we as-
sume (100) orientation of the layers and compare the re-
sults of the general asymptotic formula (11) at T=0 for
the simple cubic band (8) with the exact results calculat-
ed numerically using Eq. (3) of [5]. To evaluate J from
Eq. (11), we have to determine all the extrema of
k, (EF,k, k~), the Fermi energy FF playing the role of
the chemical potential at T =0.

For —3 & EF & —1, it is clear from Eq. (8) that there
is a single maximum of k, located at k„=k~ =0. It leads
to long-period oscillations in the exchange coupling for
EF ~ —1. These oscillations together with the relevant
Fermi-surface cross sections are shown in Fig. 2 for EF= —1.05 (open squares) and compared with the exact re-
sult (solid squares). The initial sign of J is antiferromag-
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FIG. 2. Comparison of the exchange coupling J obtained
from the asymptotic formula (11) (open symbols) with the ex-
act result (solid symbols): Squares are for EF = —1.05; trian-
gles for EF = —0.95. Inset: The corresponding Fermi-surface
cross sections. Arrows indicate the relevant caliper measure-
ments proportional to (period), an extended zone scheme be-
ing used in the left-hand inset to show the role of the 2~/a shift.
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! netic and the period is = 10 interatomic distances, which
is as observed in structures such as Co/Ru [4]. A long
period is obtained because the Fermi surface for EF= —1.05 nearly touches the zone boundary and twice the
distance from the extremum to the zone boundary (2n/a
minus the caliper measurement) is small.

For EF & —1, the Fermi surface develops four necks in
the k -k~ plane (equivalent to two saddle points) which
are the extrema that determine oscillations in the ex-
change coupling for —

1 & EF &0. Such oscillations are
shown in Fig. 2 for EF = —0.95 (open triangles) together
with the exact result (solid triangles). The period is
again long because the diameter of the necks is small for
EF = —0.95. Compared with EF = —1.05, there is a
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phase shift in the oscillations and the sign of J for small
N is now ferromagnetic. The phase shift is obtained be-
cause the factor a in Eq. (11) takes a value o =1 for a
saddle point. Clearly the asymptotic formula is rather
accurate for N ~ 5.

The dependence of the oscillation amplitude on the
curvature of the Fermi surface is illustrated in Fig. 3.
The smaller amplitude of the oscillations for EF = —1.05
(solid circles) compared with EF = —2.5 (open squares)
is due to the greater curvature of the Fermi surface at the
extremum. In practice, roughness of the surfaces may
lead to a variable effective spacer thickness which would
tend to suppress short-period oscillations, such as those
for EF = —2.5, due to an averaging effect.

Although the amplitude of J for EF = —1.05 (long-
period oscillations) is relatively small, numerical evalua-
tion of Eq. (3) at T=O K for a spacer layer consisting of
two atomic planes (see [5]) gives J=1 ergcm . This is

comparable with the largest experimental value J=-6
ergscm obtained for Co/Ru structures [4].

Finally, we turn to the temperature dependence of the
exchange coupling. It is controlled in our theory by the
sinh factor in Eq. (11) which has exactly the same form
as in the dHvA effect [6] provided the following cor-
respondence is made:

r]k, a
N

t]8

where m, is an effective "cyclotron" frequency. Substi-
tuting in Eq. (12) typical values of EF, it is easy to see
that the effective cyclotron frequency in the present prob-
lem is A, co, =10 K for small N. The dominant tem-
perature-dependent factor in Eq. (11) is T/sinh(2trT/
hco, ) and hence the temperature dependence of the ex-
change coupling is on the scale =100 K, as observed by
Parkin, More, and Roche [4]. An eA'ective cyclotron fre-
quency Ace, =10 would correspond in the de Haas-van
Alphen effect to an applied field of =10 T which ex-

N

FIG. 3. Comparison of the amplitudes and periods of oscilla-
tions in the exchange coupling for two diff'erent fillings of the
band: Er = —1.05 (solid curve) and —2.5 (dashed curve).

plains why the oscillations in the exchange coupling are
seen at room temperature and, presumably, are not easily
washed out by impurity scattering. Thus, study of lay-
ered magnetic structures with different crystal orienta-
tions of the spacer layer might be used to determine ex-
tremal cross sections of the Fermi surface and effective
masses for concentrated alloys and other systems (possi-
bly including exotic materials like heavy fermions and
high-T, superconductors) not susceptible to de Haas-van
Alphen investigation. Before a detailed comparison with
real systems can be made, however, it is essential to ex-
tend the calculations beyond the present one-band model
and include the sp band. The extended theory should
then be applicable to noble-metal spacer layers.

Finally, we wish to mention a connection between the
oscillations of J obtained in our theory and RKKY. Our
asymptotic results obtained to O(1/N ) concerning the
period, rate of decay, and even the temperature depen-
dence of J are directly comparable with the asymptotic
RKKY results obtained by Roth, Zeiger, and Kaplan [7]
for a general shape of the Fermi surface. It is only neces-
sary to transpose their results to the appropriate planar
geometry and introduce the discrete nature of the spacer
thickness. However, the overall amplitude of the ex-
change coupling and its initial sign and behavior at short
distances are all model-dependent features and cannot be
predicted from the conventional RKKY theory. Further-
more, differences from an RKKY-type theory show up to
O(1/N ) [8]. They appear because in our nonperturba-
tive theory the interference between the disturbances in

the electron density in the nonmagnetic spacer, arising
from the coupling to the two ferromagnetic layers, is
treated exactly.
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