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Exact Solution of the Perk-Schultz Model
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In the Perk-Schultz vertex model links can have n+1 different colors and the weights are ferroelectric
or antiferroelectric depending on a discrete parameter e, = + 1 (1 ~ a ~ n). We compute the exact
ground-state spins and find ferrielectric behavior for general signs e, . The exact free energy and excita-
tion spectrum are found as well as the finite-size corrections yielding the central charge and conformal
dimensions. The scaling limit yields a quantum field theory whose mass spectrum and S matrix are ex-
plicitly obtained through the light-cone approach. The mass spectrum surprisingly depends on the an-
isotropy parameter and the signs of t,

PACS numbers: 75.10.Hk, 11.10.—z, 75.50.6g, 77.80.—e

gime)
R;;(O) =sin(y+e, O)/siny,

Rg, (O) =G,b sin (O)/sin y, a ah, (I)
Rab(O) eiesgn1a —b)

Here e, = ~ 1 and G,bGb,
' =1 (no sum on a, b)

This multicolor vertex model (number of colors is
n+ I ) favors ferroelectric configurations (all links of the
same color) for the colors a having e, =+ l. (We assume
~O~ & y/2. ) For colors b with eb = —1, the weights (1)
make alternating colored configurations more probable.
Notice that reversing the signs of all e, (1 ~ a ~ n+ 1) is
equivalent to changing y into x —y. In spite of the fact
that some weights are complex here, all results turn out
to be physically meaningful. All weights are real in the
hyperbolic regime that follows from (1) by O i O,

1 y.
The eigenvalues and eigenvectors of the row-to-row

transfer matrix for N sites associated with (1) can be
written as [4]

Current interest in integrable two-dimensional lattice
models comes from their exact solvability and from the
remarkable property that they provide representatives for
all known critical behaviors [1,2], that is, solvable repre-
sentations for all universality classes.

As is known, the solutions of the Yang-Baxter equa-
tions (that provide all integrable models) are classified by
Lie algebras (9) and their representations (V). Besides
the labels 0 and V, the statistical weights for the gapless
critical models are trigonometric functions of two param-
eters O (spectral parameter) and y (anisotropy parame-
ter). y is related with the quantum group variable q
through q =e'~. In addition, it is possible to introduce in
the weights a set of discrete parameters e, = ~ 1 (1 ~ a
&dimV) respecting the integrability. This has been

done for 0 =2„ in Ref. [3] and can also be done for other
Lie algebras.

We present in this Letter the exact solution for the A„
case (Perk-Schultz model) for all choices of e, = ~1.
The Perk-Schultz model is a vertex model in a square lat-

n+1
tice where the links can be in n+1 different states. The A(O X) = ~ A'&'(O X)
nonzero statistical weights are given by (trigonometric re- j=l

~ where the first term
iP '/V

psin(y+ e~O) ' sinh(X, ' +iO —
d'ye~/2)

E]
J 2 siny a =1 sinh(A, , ' +i 0+i yei/2)

dominates in the thermodynamic limit (N=ee). The numbers l,i~, 1 ~ j~ n, 1 ~ a~ ~p~,~ p„~p„+ ~

—=0, are solutions of the nested Bethe-ansatz equations (BAE)
n —

1 pj (j) (j)

U [ ]iv [ ]p [ ]p, —] ~ slnh[k Xp lyEJ+/]

P"' sinh(k, '
Xp +i ye, +)/2—) ' ' sinh(&, '

p=i sinh(X —XP —iye~ +~/2) p=i si.nh(X, ~

(2)

with N=—po~ p] &

—
A,p~

' +i ye~/2)
—Xp'

' —iye~/2)
'

for 1 ~ j ~ n 1 ~ a ~pj. Here Nj=pj —]
—pj.

These BAE reduce to those solved in Ref. [2] when e, = —
1 for 1 ~ a ~ n+1. As one sees from (4) the factors G,b

have the meaning of external fields and we will assume ~G,b~ =1 in this paper. In that case they are equivalent to gauge
transformations or twists on the boundary conditions [2,5]. The effect of e, is more dramatic. When e, = —e, + ~ (for a
given j), we see in Eq. (4) that the phase describing the interaction of pseudoparticles in the jth step between them
(Xp, 1 ~ P ~ p~) vanishes. The interaction between pseudoparticles in different steps is always present. The attractive
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or repulsive character of the interactions can be changed at will by choosing the e, appropriately.
Let us now solve Eq. (4) for N ~. The number of roots tends to infinity in this limit and they become closer and

closer with a 1/N spacing. For the ground state, we find that they have a fixed imaginary part,

~."=p."'+i -, ~(I+ ~, ), (5)

where p,j
Taking logarithms of Eq. (4) we find

Pj Pj
—

1

P=1 P=l
Pj + I

Ej + 1 g C&(p pp +i K(Ej Ej +) ), y/2) =272I Pj. ,
P=l

where Pj stands for the logarithm of the left-hand side of Eq. (4), 1 ~ j~ n, 1 ~ a ~ p, , and

e(l,z)—:l'In . , e(k, z)—:—e(k+l'Tc/2, z),sinh(X+ iz)
sinh(k —iz) '

and I E Z+ —, . For the ground state the I form monotonous sequences(j) I (j)

(6)

Define the densities

pj (p~ ) = Ilm (.) (.)
(j)

&-- N (p.'+ )
—p.' )

Using the usual procedure [2], Eq. (6) yields in the N =~ limit a set of linear integral equations for the densities pj(p).
%e have for the ground state, ~here o, —=pj,

o, (p) —g „rC,k(p —p')ok(p') = ' +'(p, y/2).dp k ( ~j I (io)
2x

Here

+jk (p ) ej ~jk ~a,e,@ (p y) &j~j,k+ & [&..,.. .@'(p, y/2) —&,, —.. .@'(p,y/2)]

Ej ~j,k —1[~pj,E. ,
@'(p, y/2) —&,, —,„,@'(p, y/2) l .

Equation (10) can be easily solved by Fourier transformation,

o, (p) = a, (k)e'""dk.

%'e find

(i2)

8, (k) = sinh [—,
' k [(n+ 1

—j)z/2+ (x/2 —y) PI"=~.+ & e&]J
(13)

sinh[ —,
' k [(n+ 1)x/2+ (x/2 —y)QP=+~'el]j

Using Eq. (13) we get for the Cartan weights in the ground state
6'j+ ] Ej

(n+ i)(i —2y/~) '+gP=", ~,
'

It follows from Eq. (14) that ~SI~ & 1 for 0 & y & z. Therefore, unless all ej. are equal we find ferrielectric behavior.
That is, the ~Sj~ values are larger than in the antiferroelectric case (Sj =0) and smaller than in the ferroelectric case
(Sj =+'1). More precisely, Sj. behaves ferrielectrically provided ejWEJ+f. Otherwise, when ej =ej+~, Sj exhibits an
antiferroelectric character.

The free energy follows from Eqs. (2), (3), and (13),

f(n, 0, y) = —lim —InA(O, X)
1

w- N

dx sinh(2x8)»nh [x[«/2+ (~/2 —y)Xk-+2'ek]]=2 sinh[x z 2 —e( z 2 —
ysinh(«) sinh [x[(n+ 1)x/2+ (x/2 —y)gk +~' ek ]f

Excited states are obtained when holes appear in the sequences lp~ [see Fq. (8)] as

I.'~+, —I.'~' = &+a. .„P,,„,
where 8) =—X,j„ is the hole position at the step j k [2].
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The root density for such a state is given by

a.,.(p) =6»,8(p —8(c) R,—,,„(p —8/),
where R//, (p) is the resolvent of Eq. (10). That is,

R =[1—K] (Is)
We find

sin h jx [I & (r/2+ ((r/2 —y) QI, , e/ ]j sin h [x [(n + 1
—l & )rr/2+ ((r/2 —

y )Zk =/, + & &/ ]]
R// (2x) =sinh((rx)

sinh[x(rr —y)]sinh(xy) sinhjx[(n+1)(r/2+((r/2 y)Zk=( ~k]]

The transfer matrix eigenvalue corresponding to a hole at 8] in step j has th««m

A,„,(8, 8(, ) = exp[ ~f(n, e, y) —ig~(8+ie(, y)],

(19)

(20)

where we find

y K
g (P y) =@' (~, P

—(~„j+ 1
—2— e/, ~ ——(c„j+ 1 —2

k=l k=1
(21)

Here

n+I
(n+1)/2+ ( —,

' —y/rr) g e/,
k=l

where

K
mI =p sin —x„ I+ 1 —2

2
(24)

Notice that Eqs. (13)-(21)are invariant under

as it must be. When e~
= —1 (1 &j& n+1) they reduce

to the results in Ref. [2].
We see from (21) that the model is gapless in the

present trigonometric regime since gj( —~, y) =0. [It
has a gap in the hyperbolic regime following from Eq. (1)
upon 8 ie, y iy. ] We can then apply the light-cone
approach [6] to derive a massive quantum field theory in
an appropriate scaling limit. In this approach the energy
E and momentum P of the excitations is given by

E+P= lim
a O, iO

g'i'(+ 8+ie,"', y)
(22)

We let 0 i ~ and the lattice spacing a 0 such that

p = (I/a)exp( —ie(r„), (23)

L(v (n, e, y) =f(v(n, e, y) f(n, e,y)—
~ oo

+J, CX(f((k() a(/v/'(X()
I= I A!

where p is a fixed mass unit. The energy-momentum dis-
persion law results in

E( =m/cosh(x„e(, ' ), P/ =m/sinh(x„e(, ' ),

That is, we find relativistic particles with the mass spec-
trum (24). We want to stress that this mass spectrum
depends on the continuous parameter y. This is in con-
trast with all mass spectra found up to now for integrable
quantum field theories, which are all y independent
[1,2,6,7]. Indeed, the gap (sometimes called mass) is
coupling dependent in models like the eight-vertex model.
At the quantum field theory level y stands for a coupling
constant (or a function of it).

The S matrix between a hole at branch l and another
at I' follows from Eq. (19) applying the method of Ref.
[S] (that is, the S matrix between a particle m/ and a par-
ticle m/) It read. s S//(p) =exp[i'//(p)], where p is the
relativistic rapidity and

+ P/a„
I$(/(y) =2(r a//(X)Ch.Jp (25)

A look at Eqs. (19) and (26) shows that this S matrix
can be expressed as an infinite product of I functions.

Besides this scaling limit yielding an integrable massive
quantum field theory, we can take the trivial continuous
limit, leading to a conformal field theory.

Let us sketch the derivatives of the finite-size correc-
tions and give the results for the conformal properties of

1

this continuous limit. The finite-size corrections to the
free energy can be expressed analogously to Ref. [2] as

+ 1
"

++ g [f/(A/ )+f/(A/+)]+ g
&/&

—
(/&

+(higher-order terms) .2N i=l 12N (=& a(v (A(+) cr(v (A( )
(26)
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Here ~ At—are the largest positive and negative roots of the BAE (4) in the lth branch. The Fourier transforms

Xt—(w) = exp(iwt) 8( ~ t)ot(vt'(At++ t )dt

are solutions of the matrix Riemann-Hilbert problem

n

Xk (x)++ Rtk(w)A'(+(w) =e '" "ak(w)+
l=l 2N

n—1+g Rtk(w)
l=l

tw Rlk (W )
12N t=t crfy' (A+)

(27)

(28)

where we used A~+ =AI =A.
The solution of this problem is analogous to Refs. [2] and [7]. We find

Ljv (n, 8, y) = — "
sin(tc8) — '

[Ae '" Ze"—],
6N 2 N

where
r

n
1 I

2h(++ (et+ )+e()S' Rt( (0) 2h(++ (e('+]+ e(')S'
8 (',~=] 27' 27'

Rtt (0) follows From Eq. (19) and
r

(29)

(30)

R(i '(0) = —2($(i
~I+]+~I

4
(e(+i+et) y

+~~) +]
2z

~( —]+~I

2

(e() y +~I,j—
1

~1+ i+ ~t

2

(et+i) y (31)

and 5 ' stands for the Cartan weights of the state,

=2pI pI+] pr —] .(~) (32)
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S =2y/tt —1 (33)

[from Eq. (14)]. The free energy follows from Eq. (15):
2

f(8, y) =2
dx sinh(2x8) sinh [x (tt —y) ]
x sin h (ttx )

(34)

It diff'ers from the usual six-vertex model [2], showing
that the two models are inequivalent. In the massive scal-
ing limit [Eq. (23)], we find (for n =1, et = —1, and eq
=+ I) a single free particle with mass Itsiny. Notice
that the S matrix (26) equals unity in this case as one
would expect from the BAE decoupling.

h, follows from h, by exchanging h~+~hI . We denote
by h&

— the number of holes at step l and beyond ~A.
Since the speed of sound here is U =sintc8, Eqs. (29) and
(30) tell us that the central charge is c =n for the Perk-
Schultz model.

For n =1, E] = 1, and F2=+1 the Perk-Schultz mod-
el becomes a solvable six-vertex model. This turns out to
be a free model since the BAE become in this case a set
of p] decoupled equations. This six-vertex model possess
ferrielectric behavior since the ground-state spin equals
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