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Intrinsic Nonlinear Conductance of Mesoscopic Conductors
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The conductance of a mesoscopic conductor is shown to be a sensitive function of the dc voltage on the
system. In the low-temperature limit, changing the potential drop across the system by an amount on
the order of the level spacing of the system is sufficient to change the conductance by e /h. Arguments
based on scattering theory, analogy with the universal conductance fluctuation, and numerical evidence
are presented to support our conclusion. Our theory is in good agreement with the results of harmonic-
generation experiments.

PACS numbers: 72. 10.Bg, 72.15.Rn

In the mesoscopic regime experiments [1] and theory
[2] have convincingly established that the conductance G
depends sensitively on the magnetic field, Fermi energy,
and impurity configurations [3,4]. It is natural to ask
whether G is a similarly sensitive function of the electric
field in the system. Such a dependence will manifest it-
self as a nonlinear conductance of an intrinsic origin (as
opposed to one of extrinsic origin such as heating [5] or
radiative dephasing [6]). Recent experiments by Webb,
Washburn, and Umbach [7] on metal wires and rings and
by de Vegvar et al. [8] on GaAs wires clearly demon-
strate the existence of strong nonlinear conductance.
In these experiments a carefully filtered pure harmonic
current I=I peso( cto) was fed into the sample and the
higher harmonics in voltage V(t) =+ V„cos(ntot) were
monitored. The even harmonics were presumably rela-
tively uncontaminated by heating effects. Three impor-
tant conclusions emerge from these experiments. (1) The
nonlinearity is very strong; even at Ip=10 A one can
still see significant amounts of high harmonics. (2) De-
pending on the magnitude of Ip, the dependence of V„on
Ip may belong to one of three different regimes: At the
lowest level of the current, V„txIp (henceforth phase I,
not seen in the metal experiment), crossing over first to
VtxIp (phase II) at moderately high current level, and
eventually to V„~Inst (phase III, not seen in the GaAs
experiment). (3) In the latter two phases V(t) is highly
anharmonic, with V„decaying as a function of n roughly
as 1/n.

These experiments can be understood qualitatively us-
ing the theory of Altshuler, Khmelnitskii, and Larkin [9]
(AKL) but quantitatively the theory cannot explain the
observed strong nonlinearity (see below). In this paper
we present a theory which satisfactorily explains the ex-
periments. We further point out that the nonlinearity is a
general feature of transport in the quantum regime.

To analyze the experiments, we follow Refs. [7], [8],
and [10] and use the model of a current-dependent fluc-
tuating conductance:

( )
I(t)

G + (e /h )f(I(t )/I, ) '

I(t) =Ipcos(cot),

lpcos(tot )Vt =
Gp+ (e /h )f'(0)Ipcos(cot )/I,

(2)

and it is obvious that the nth-order harmonic V„~Ip and
that the phase-I behavior is reproduced. On the other
hand, if Ip& I, no simple explicit analytical representa-
tion of V(t) is possible. The nonlinearity guarantees the
presence of high harmonics, but their magnitude in-
creases only linearly with Ip. This linear dependence
stems from the trivial proportionality between V and I.
For once Ip & I, if i

reaches its bound (on the order of 1)
and cannot increase further; the nonlinear resistance does
not become even more nonlinear with increasing Ip. This
is the phase-II behavior. We shall return to the phase-III
behavior below.

Thus the crossover point between phase I and phase II
gives a good measure of I, or, equivalently (as long as
Gp»e /h, see above), of V, =I,/Gp. The AKL theory

where Gp is the conductance of the sample at zero current
and e /h sets the scale of conductance fluctuation. The
function f is dimensionless and describes the variation of
conductance as a function of the current. In general f is
a highly nonlinear function which Auctuates around zero
and whose magnitude is bounded (of order 1). Gp has
been chosen so that f(0) =0. We have also introduced I,
to characterize the scale of the onset of strong nonlineari-
ty. For ixi & 1 (but definitely not for ixi & 1), f(x) can
be adequately described by its linear approximation
xf'(0). Apart from these properties f is a sample-
dependent function about which few general statements
can be made. To analyze the experiments it is best to use
a current-dependent conductance; for theoretical discus-
sions a voltage-dependent G is more convenient. While in
general a nonlinear inversion is needed to relate one to
the other, in the limit where Gp»e /h we can use V
=I/Gp for the conversion. This will be done in the fol-
lowing. The reader is invited to look at Fig. 1 where typi-
cal examples of the voltage-dependent conductance are
displayed. All three phases have been qualitatively repro-
duced numerically using a current-dependent conduc-
tance of the type given in Fig. 1.

In the small-current limit Ip« I„Eq. (1) can be ap-
proximated by
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a 4N -dimensional manifold. To move about this mani-
fold in such a way as to change the phase according to
Eq. (5) without changing the conductance according to
Eq. (6) requires confining the 4N parameters to move
along a curve. In the absence of any good symmetry this
is a highly unlikely event [12]. We therefore conclude
that a change in voltage will cause, with probability 1, a
change in the conductance. To estimate the magnitude of
Bg, we note that extrapolating BE to e in Eq. (5) results
in a change of the determinant of roughly exp(ix). Since
the determinant of a unitary matrix can be written in the
form exp(ip), where p C [0,2x], this suggests that if BE
—t.' the S matrix is substantially altered. Results from
the random matrix theory of the universal conductance
fluctuations (UCF) [13] lead us to believe that this
changes the conductance by e /h. Note the correlation
between 6'E —e and Bg is only a probabilistic one. As a
consequence of such a correlation, the conductance de-
pends on the voltage in such a way that every time the
latter changes BV—e/e the conductance changes roughly
by e /h.

Our result is new but not surprising. The language we
have used provides a unified framework in which to dis-
cuss conductance fluctuations. Consider the celebrated
example of scatterer motion [3], in which moving a
scatterer by a distance d-kF ' leads to a hg-1; any
change in an external electrical field will disturb the
overall scattering-potential landscape and cause the con-
ductance to change. To understand UCF from this point
of view, consider a sample of volume 0 in which the elec-
tron wave functions are essentially extended. In such a
system, moving a scatterer [described by a delta-function
potential UB(x)] by a short distance d is expected to shift
the energy level by

U(( y(0)
~

' —
~ y(d) (') = Usin'(kFd)/n .

Since U —EFa, where a is on the order of atomic radius,
hE —csin (kFd). By our S-matrix argument, this causes
the conductance to change by ~hg~ —sin (kFd), as known
from the theory of UCF. Likewise, the magnetic finger-
print can be understood using the same language: If the
magnetic flux @ threading a two-dimensional sample of
area xR 2 is changed by hc/e, the conductance is expect-
ed to change by —e /h. From our point of view, this is
because the same change in @ also changes the single-
electron energy by roughly (eh/mc)B@/xR, which is on
the order of e—2+A /mR . These are all examples of a
more general result: Changing the parameters of a Ham-
iltonian such that the energy levels are changed by e gen-
erally affects the conductance by e /h. On the other
hand, the dependence of G on EF, which is not a parame-
ter in the Hamiltonian, is much weaker and is indeed
given by ge and not by e. This is due to the fact that
6 d8/BE is the scattering time [14]; equating this to the
time needed for an electron to diA'use across the sample
reproduces the familiar and experimentally confirmed re-

suit Bg/BE —ET '.
A diagrammatic calculation of this nonlinear eAect re-

quires considerable care to maintain the small but non-
negligible level separation e. Previous theories are based
on a quasicontinuous energy spectrum. Within such a
theoretical framework only local perturbations (such as
the displacement of a scatterer) are picked up; the long-
wavelength perturbations typified by an E field will not
become visible until the characteristic energy scale
reaches ET. An attempt to evaluate (g(V)g(0)) dia-
grammatically is in progress.

We have carried out extensive numerical calculations
to verify our findings. Our technique is identical to that
used by Stone [15] in his study of the magnetoresistance
fluctuations and is based on calculating recursively the
Green's function of the system. The dc electric field was
assumed to be uniform and introduced through a linear
slant of the on-site potential along the direction of
transmission. The transmission at a fixed energy was first
calculated. Two typical results are given in Fig. 1. It is
clear that (1) the transmission is a complicated function
of the voltage similar to the magnetic fingerprint com-
monly seen in mesoscopic systems; (2) no V~ —V sym-
metry exists, and the system is rectifying; (3) the conduc-
tance fluctuation has a magnitude on the order of 1; (4)
the voltage change needed to cause a qualitative change
(in the sense of going from a maximum to the next
minimum) in transmission is on the order of e, the level
spacing (calculated for convenience for a clean system of
the same size), and not ge. In Fig. 2 we show the nor-
malized conductance autocorrelation function [16] C(V)
=(Bg(Vo+ V)Bg(Vo))/(Bg ). The characteristic voltage
where C(V) drops to e ' is marked by A and is seen to
be within a factor of 2 of e for the system (marked by C)
and much smaller than &g)e, marked by B. Note the
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FIG. 2. Normalized conductance autocorrelation function
C(V) (see text) for 30 by 30 systems. The voltage at which
C(V) drops to e ' is marked by 2, and e and ge by C and B,
respectively.
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significant negative correlation at large values of V, which
we attribute to the existence of important slower fluctua-
tions of g as a function of V. This and a direct inspection
of Fig. 1 suggest that the dependence of g on V has rich
harmonic contents; while the highest rate of variation is

given by e, slower variations, including those on the scale
of ge, are also important. We have also carried out simu-
lations with an imposed transverse voltage and found a
similar effect on the conductance.

So far we have been concentrating on the transmission
coefficient at zero energy. If there is a finite voltage
difference across the sample, the overall conductance is

given by

+eV dEG= Tr[t ~2(E, V)t )z(E, V)
0

+t„(E,v)t,', (E,v)].
All the transmission amplitudes t(E, V) fluctuate, but the
fluctuations of t(E~, V) and t(E2, V) become uncorrelat-
ed once ~E~ —E2~ exceeds ET (see above); therefore [9]
the Auctuation of the overall conductance G gradually di-
minishes in amplitude like (ET/ev)'t . We concur with

previous authors [7,8, 10] and have confirmed using direct
Fourier analysis that this leads to the phase-III behavior.
In summary, the harmonic-generation experiment is
characterized by two different energy scales. The onset
of strong nonlinearity takes place at eV —e where phase I
meets phase II; the beginning of phase III is at eV
—ET =ge. In the GaAs experiment [8], g ( 5, which ex-
plains why no serious conflict with earlier theories was
found. In the Sb experiment, g= 500, and phase II and
phase III were clearly resolved. Using an estimated value
of ET=1.2X10 eV (which is consistent with the es-
timated level spacing e=2.4X10 eV and a g=500),
we find the crossover current between phase I and phase
II I~2=0.5 nA and the crossover current between phase
II and phase III 123 =250 nA, in fair agreement with the
experiment.

The nonlinearity discussed here should not be confused
with the electric-field-induced delocalization. In the
weak-localization regime it is known that apart from
heating effects the average conductance is not affected by
a dc electric field [17], a result which is fully consistent
with our theory which predicts electric-field-dependent
variations around the average value.

We are indebted to Dr. R. A. Webb for discussions and

for providing us with materials prior to publication [10]
in which much of the phenomenological analysis was
done. This work was supported by the Office of Naval
Research.
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