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Nature of the Step-Height Transition on Vicinal Si(001) Surfaces
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The Si(001)2X 1 surface is expected to undergo a phase transition from single- to double-atomic-
height steps with increasing angle of miscut. Here we show that this transition is quite diA'erent than
previously believed, involving something like a "devil's staircase" of transitions in a mixed phase consist-
ing of a complex sequence of single and double steps. Even at low angles, where only single steps occur,
the areas of 2X 1 and 1 x 2 regions are unequal, in agreement with recent experimental results.

PACS numbers: 68.35.Bs, 64.80.Gd

Steps play a crucial role in growth at semiconductor
surfaces. There has been particular interest in the role of
steps of single versus double atomic height on Si(001),
since single-height steps necessarily lead to antiphase
boundaries in III-V semiconductors grown on Si [1].
Moreover, a series of papers by Alerhand and others
[2-7] has revealed that steps on Si(001) exhibit fascinat-
ing behavior, including most notably a phase transition
with increasing angle of surface miscut along [110].

Here we show that the nature of this phase transition,
and the dependence of miscut angle generally, is rather
diferent than previously believed. In particular, there is
neither an abrupt transition from single- to double-height
steps with angle [2-4] nor a coexistence between spatially
separated regions of single- and double-height steps [5].
Instead, as the angle increases past a critical value, pairs
of single-height steps collapse into double-height steps in
a complex pattern, so that at zero temperature the sur-
face undergoes a cascade of transitions resembling a
"devil's staircase" [8]. In addition, even for small angles,
where only single-height steps occur, the sizes of the 1 x 2
and 2x 1 terraces are unequal. This explains the surpris-
ing recent measurements of Tong and Bennett [7].

The competition between single and double steps was
first analyzed by Chadi [9], who identified the step atom-
ic structures shown in Fig. 1. Because of the symmetry of
the dimerized Si(001)2&&1 surface, there are two distinct
types of single-height steps, denoted 5& and Sz. Single-
height steps separate regions of 2 & 1 and 1 & 2 periodicity,
so on vicinal surfaces one cannot have two S~ steps
without an intervening S~ step, or vice versa. Since there
is no corresponding restriction on double-height steps,
only the lower-energy type (denoted Dz) need be con-
sidered [9].

Alerhand et al. [2] pointed out that, in order to fully
understand the competition between single- and double-
height steps, one must include the elastic interaction be-
tween the steps. Because of the anisotropic stress of the
2X 1 surface, the energy of a flat Si(001) surface can al-
ways be lowered by introducing single-height steps, which
break up the surface into domains of alternating orienta-
tion of the dimerization [6].

Single-height steps remain energetically preferred for

small miscut angles. But because of the strong mutual
repulsion between single steps, when the step spacing be-
comes too small (i.e. , at large miscut angles) the energy
of a pair of single steps becomes higher than that of a D~
step, leading to a surface phase transition [2]. This pic-
ture was further elaborated by Poon et al. [4], and by
Bartelt, Einstein, and Rottman [5].

From this extensive body of previous work, it is well es-
tablished that there are two principal interactions be-
tween steps on Si(001), which follow directly from ele-
mentary elastic theory and the symmetry of the surface
[2,4,6]. First, the anisotropic stress of the surface due to
the 2x 1 dimerization leads to a force monopole acting on
the Sz and Sg step edges [6] and, consequently, a loga-
rithmic dependence of the interaction energy on step sep-
aration [10]. Second, step edges in general may give rise
to a force dipole, and for Si(001) this dipole is significant
for S~ and Dg steps. The dipole-dipole interaction ener-

gy shows an l dependence on step separation I [11]. A
simple elastic model incorporating these interactions has
proven to be very successful in describing the response of
2& 1 and 1 x 2 domain sizes to an externally applied strain
[6,12], and in reproducing the results of detailed atomis-
tic simulations [4].

Here we use the same elastic model, augmented by

FIG. 1. Side view of the crystal structure of steps of single
(Ss and S~) and double (Ds) atomic height on vicinal Si(001)
surfaces. A [110] projection is shown. Horizontal bonds are di-
mers of 2 & 1 terrace; solid circles denote dimers of 1 x 2 terrace,
which are normal to the plane of the figure.
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FIG. 2. Energy of a pair of 5&-Sz steps for two fixed miscut
angles 0 corresponding to step separations l vs the width of the
minority terrace. The left-most data point corresponds to a D&

step, representing the smallest possible terrace width. The
right-most point is the symmetric case of equally wide 2x 1 and
1 X2 terraces (i.e. , p=O). Dots are results from numerical re-
laxations of Si atoms interacting via the empirical Stillinger-
Weber potential. Solid line is elastic continuum model, Eq. (1).

atomistic simulations, to show that steps on Si(001) ex-
hibit an even richer and more complex behavior than pre-
viously recognized. We begin our analysis by considering
surfaces miscut at small angles from the (001), where
only single-height steps are expected. Recently Tong and
Bennett [7] found that the areas of 2X I and 1&&2 ter-
races were unequal even at small angles. This implies ei-
ther that S& and Sz steps are not equally spaced, as has
been universally assumed, or else that D& steps are
present even at small angles.

In order to understand this behavior, we calculate the
energy of a surface with a given miscut angle, and hence
a given step density, as a function of the width of the 2 x 1

terrace. (Here 2X 1 and 1&&2 refer respectively to the ter-
races with dimer bonds perpendicular and parallel to the
step edge. ) The results are shown in Fig. 2(a) for a rela-
tively small (but otherwise arbitrary) angle. The ter-
race-size asymmetry is immediately apparent.

Before addressing the physical mechanism responsible
for the asymmetry, we should mention some details of the
calculation. As we are in eAect extending the work of
Poon et al. [4], we use the same potential model, that of
Stillinger and Weber [13], to permit direct comparison.
However, as discussed below, the qualitative results may
be understood from a rather general perspective, and do
not depend on the precise potential. The eAect of the po-
tential on quantitative results is also discussed below.

Because of the long periodicity of the steps, and the
corresponding depth of the strain fields, accurate numeri-
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Using values corresponding [4] to the Stillinger-Weber
potential, Eq. (1) gives the solid curves in Fig. 2. These
continuum results agree well with the full atomistic cal-
culations for step separations ~ 6a. Since steps are never
this close at the angles discussed in this paper, we can
safely use the elastic model without further discussion.

For equal terrace sizes (p=0) the final term in Eq. (1)
drops out, giving the expression used in Ref. [4]. Howev-
er, the energy can be lowered by moving the Sz step into
a region of increasing displacements induced by the re-
bonding dipole at the S~ step. For small angles this dis-
placement of the S& step is roughly constant, approxi-
mately 5a.

With increasing angle of miscut the D~ minimum in

Fig. 2 becomes deeper, until at a characteristic angle 0,
the energy of the D& minimum becomes lower in energy
than the S~-S8 minimum, giving the transition discussed
by Alerhand et al. and Poon et al. Including the terrace

cal relaxations require enormous cells when performed
with traditional methods [4]. We have therefore imple-
mented a more eScient approach, where a few layers of
atoms are coupled to a semi-infinite elastic substrate. We
have used 6-8 layers of atoms, and a continuum elastic
substrate incorporating the full cubic anisotropy of Si.
As it is convenient to have the substrate oriented along
(001), an additional double-height step is included to
simulate the vicinal surface on the flat substrate. This
step is fixed in a rigid ideal geometry, so that it exerts no
force. Details of this method will be given elsewhere.
Comparison with calculations performed as in Ref. [4] in-
dicate that the error from these approximations is less
than 1 meV/a (a =3.84 A).

Our results, the dots in Fig. 2(a), show two local mini-
ma. The higher local minimum (left-most point) corre-
sponds to a D~ step. The configuration of minimum ener-

gy corresponds to a pair of single-height steps, with the
Sz step considerably displaced from the midpoint be-
tween the two neighboring Sg steps (right-most dot is
midpoint). Only a small barrier separates the single- and
double-height configurations.

The asymmetric terraces can be understood easily
within the elastic model mentioned above. Let 2l be the
distance between two steps of the same kind, with a being
the surface lattice constant, and (1 —p)l being the size of
the 2x 1 terrace, so p describes the asymmetry between
1 x 2 and 2 x 1 terrace sizes. Adopting Poon's notation,
the parameters X and Xd describe the force monopole
and force dipole terms, with the remaining local contribu-
tions to the step energy included in a constant term

(s„+s, )
ko

" ' . Then the energy of the step pair is
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asymmetry changes this angle only slightly, from 0,
=1.1 to 0, =1.3'.

At still higher angles, the local minimum associated
with single-height steps disappears entirely, as seen in

Fig. 2(b). At such angles S~-S~ steps are not even meta-
stable with respect to step displacement, but collapse
spontaneously into DB steps.

We now turn to the more complex issue of the nature
of the step-height phase transition, which has been the
subject of recent controversy [2,3,5]. Previous analyses
have invariably begun with the assumption that one is

dealing with a transition from a phase of pure single-
height steps to one of pure double-height steps. As noted
by Bartelt, Einstein, and Rottman [5], in this case instead
of an abrupt transition at 0, there should occur an inter-
val of miscut angles 0] ~ 0~ 02 where the two phases
coexist (spatially separated) in thermodynamic equilibri-
um. The critical angles 0] and 02 are determined by a
common tangent construction [5], which for the present
parameters gives 0] =0.7 and 02=2.0 .

However, Alerhand et al. [3] argued that such coex-
istence of phases would require faceting of the surface,
and hence substantial mass transport, which might not be
kinetically allowed. If one allows local equilibration but
not long-range diA'usion, an abrupt transition from single-
to double-height steps with angle would be expected.

Let us first examine the assumption that the phases
remain pure. In that case two-phase coexistence (surface
faceting) clearly gives the lowest energy, regardless of
whether such a state is kinetically accessible in experi-
ments. If, beginning from such a state, we then move one
pair of S~-Sq steps into the D~ region, we find that the
energy is lowered. Thus there exists a mixed phase of
lower energy than any combination of pure phases.

To show that this conclusion is rather general, we ex-
amine a simplified model. Consider two types (a and b)
of steps with dipolar interactions; i.e., the interaction en-

ergy between any two steps i and j is proportional to
(Edged~)

'
/L~J, where L;~ is the distance between the steps,

and kd can take two diff'erent positive values, one for a
steps and one for b steps. These represent Dg steps and
S~-S~ pairs, neglecting the internal degree of freedom of
the pair spacing. Then, independent of the choice of pa-
rameters, the phase with alternating a and b steps is
lower in energy than spatially separated a and b phases.

So far we have only shown that what was believed to be
the lowest-energy step arrangement is in fact unstable
against formation of a mixed phase. To identify the
structure of the minimum-energy mixed phase, we con-
sider a given angle of miscut, and generate all possible se-
quences of single- and double-height steps up to a given
periodicity. For each such sequence, we calculate the en-

ergy within the elastic continuum model, minimizing the
energy with respect to all step positions. We then choose
the step sequence with the lowest relaxed energy.

The results are shown in Fig. 3 for periodicities up to
five double steps. In every case, the energy of the mixed
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FIG. 3. Fraction of surface with 2X 1 dimerization vs miscut
angle. Patterns with periods up to five double steps are includ-
ed, permitting treatment of angles up to about 1.5 . Each of
the ten line segments corresponds to a distinct phase; the step
orderings in the respective phases are given in the inset, where"S"denotes a pair of single-height steps and "D" a Og step,
"SD" stands for a periodic arrangement of Sp-S~-Dg steps in
that order, etc. Note that all orderings maximize the distance
between single-step pairs.

sequence identified is lower than the energy for two-phase
coexistence or for either pure phase. For angles higher
than about 1.5', the 2X 1 area becomes rather small, and
periods longer than five are needed to describe the low-
energy mixed phases.

The pattern of sequences in Fig. 3 is rather simple.
The fraction of double steps increases monotonically with
angle. For any given number of double ste-. , the remain-
ing single-step pairs stay as far apart as possible, due to
their strong mutual repulsion. For example, the sequence
11122 is missing in Fig. 3, while 11212, being slightly
lower in energy, can be observed.

The average length of a 2&&1 terrace (i.e. , the total
2x 1 terrace area divided by the number of single-height
step pairs) remains approximately constant in the region
of mixed phases, while it is, of course, rapidly decreasing
with increasing angle in the pure single-height phase.
Thus the behavior of the mixed phase is qualitatively
reminiscent of the coexisting single- and double-height
phases. Consequently, the staircase in Fig. 3 deviates
only by a small amount from the almost linear curve
(linear in tanO) which one would expect in case of two-
phase coexistence.

The result looks like a devil's staircase: If we could
treat longer and longer periodicities, we would expect to
see finer and finer structure. In fact, in the simplified
model mentioned above of two steps with dipolar interac-
tions, if we constrain the steps to be equally spaced, the
model reduces to one which has been rigorously proven to
exhibit a true devil s staircase of transitions [8].

The above results are strictly valid only at zero temper-
ature; due to the small energy difrerences involved, the
complicated ordered structures will be destroyed at tem-
peratures where equilibration is feasible. Nevertheless,
our conclusions remain relevant at higher temperatures.
For the pure single-height steps which occur at small mis-
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cut angles, finite temperatures lead to thermal meander-
ing; but this meandering takes place in a nearly sym-
metric potential, and so should result in little change in
the average step position (and hence in the average 2X I

terrace size). Therefore the T=0 theory is directly ap-
plicable to the low-angle data in Tong and Bennett's ex-
periment [7].

At higher angles, since steps already mix at T=0, this
should remain true a fortiori for finite temperatures.
Thus our conclusion that the equilibrium state is mixed
rather than faceted or pure, with the 2X 1 terrace area
varying continuously with angle, remains true at all tem-
peratures. However, as discussed by Alerhand et al. [2],
at higher temperatures the free energy of the single-
height phase is lowered by step meandering, shifting the
transitions to higher angles.

Before ending, we should return to the question of
quantitative accuracy. The interactions of steps on
Si(001) are well described by the elastic model; but the
values of the parameters in the model are not accurately
known. The values used here were obtained in Ref. [4]
from a specific empirical atomistic model [13]. However,
we have calculated the stress anisotropy for this model,
and find it to be a factor of 2 smaller than the most accu-
rate available value [14]. This results in the crucial pa-
rameter X being a factor of 4 too small. Use of more ac-
curate parameters in the elastic model would probably
shift the transitions in Fig. 3 to higher angles.

Finally, we note that at any finite temperature, along
any infinite step edge in equilibrium there are necessarily
both Sq-Sq- and Dq-like regions. Thus intermixing is ex-
pected even in the direction parallel to the steps. Figure
2 suggests a way to describe such step meandering, con-
sistently allowing for both S~-Sg and Da steps within a
unified one-dimensional model Hamiltonian. One simply
replaces the harmonic term in the Alerhand-Poon Hamil-
tonian [2,4] by the full potential of Fig. 2. Preliminary
Monte Carlo simulations for this model, for angles in the
transition region, confirm that along the step edge there
are S~-Sq- and Dq-like regions. This intermixing has

also been previously inferred experimentally by Tong and
Bennett from their scattering profiles.

We are grateful to P. A. Bennett for stimulating dis-
cussions, and for providing us with his results prior to
publication. This work was supported in part by ONR
Contract No. N00014-84-C-0396.

[1] H. Kroemer, in Hereroepitaxy on Silicon, edited by J. C.
C. Fan and J. M. Poate, MRS Symposia Proceedings Vol.
67 (Materials Research Society, Pittsburgh, 1986), p. 3.

[2] O. L. Alerhand, A. N. Berker, J. D. Joannopoulos, D.
Vanderbilt, R. J. Hamers, and J. E. Demuth, Phys. Rev.
Lett. 64, 2406 (1990).

[3] O. L. Alerhand, A. N. Berker, J. D. Joannopoulos, D.
Vanderbilt, R. J. Hamers, and J. E. Demuth, Phys. Rev.
Lett. 66, 962 (1991).

[4] T. W. Poon, S. Yip, P. S. Ho, and F. F. Abraham, Phys.
Rev. Lett. 65, 2161 (1990).

[5] N. C. Bartelt, T. L. Einstein, and C. Rottman, Phys. Rev.
Lett. 66, 961 (1991).

[6] O. L. Alerhand, D. Vanderbilt, R. D. Meade, and J. D.
Joannopoulos, Phys. Rev. Lett. 61, 1973 (1988); D. Van-
derbilt, O. L. Alerhand, R. D. Meade, and J. D. Joanno-
poulos, J. Vac. Sci. Technol. B 7, 1013 (1989).

[7] X. Tong and P. A. Bennett, Phys. Rev. Lett. 67, 101
(1991).

[8] P. Bak and R. Bruinsma, Phys. Rev. Lett. 49, 249 (1982).
[9] D. J. Chadi, Phys. Rev. Lett. 59, 1691 (1987).

[10] V. I. Marchenko, Pis'ma Zh. Eksp. Teor. Fiz. 33, 397
(1981) [JETP Lett. 33, 381 (1981)].

[11]V. I. Marchenko and A. Y. Parshin, Zh. Eksp. Teor. Fiz.
79, 257 (1980) [Sov. Phys. JETP 52, 129 (1980)].

[12] F. K. Men, W. E. Packard, and M. B. Webb, Phys. Rev.
Lett. 61, 2469 (1988).

[13] F. H. Stillinger and T. A. Weber, Phys. Rev. B 31, 5262
(1985).

[14] R. D. Meade and D. Vanderbilt, in Proceedings of the
Twentieth International Conference on the Physics of
Semiconductors, edited by E. M. Anastassakis and J. D.
Joannopolous (World Scientific, Singapore, 1990), p. 123;
(unpublished).

468


