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Surface Waves in Nonsquare Containers with Square Symmetry
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Experiment and theory for surface waves in square containers suggest that the effective symmetry
may be larger than the geometric symmetry of the container cross section. The extra symmetries com-
plicate the construction of normal forms and appear to stabilize effects in the experments that would
otherwise be nongeneric. These symmetries may be directly observed if the sidewalls are deformed to a
nonsquare cross section that retains square symmetry. The effects of such a deformation are analyzed.

PACS numbers: 47.20.Ky, 03.40.Gc, 05.45.+b

Experiments on parametrically driven waves provide an
interesting context for bifurcation and pattern formation
in symmetric systems. Examples recently considered in-
clude standing-wave convection in binary mixtures [1],
oscillatory “Williams rolls” in nematic liquid crystals [1],
and surface waves in fluids. In particular, surface waves
excited on a vertically oscillated fluid layer have been ex-
tensively studied as a very rich nonlinear system revealing
various coherent patterns, including standing waves, pre-
cessing modes, and localized solitonlike states, as well as
low-dimensional chaotic dynamics and a transition to
spatiotemporal chaos [2,3].

It is now well understood that the qualitative features
of a pattern-forming bifurcation are largely shaped by the
type of instability and symmetries of the system and basic
state [4]. Consequently, there is considerable theoretical
interest in identifying the relevant group of symmetries of
a given experiment and formulating suitable normal-form
equations for the critical modes. The surface-wave exper-
iments provide an especially interesting setting for testing
the predictions of these symmetric normal forms particu-
larly when the container dimensions are comparable to
the wavelengths of the standing-wave pattern. In this
low-aspect-ratio regime, the container cross section Q
defines a geometric symmetry I' that must be appropri-
ately included in the normal-form symmetry. However,
in both circular and square geometries, theories that
model the experimental observations via normal forms
based on I" alone have not been entirely successful; either
certain qualitative features of the observed bifurcations
were absent or else nongeneric assumptions were required
on the nonlinear terms [5]. These discrepancies suggest
there are additional qualitative features of the experi-
ments that must be accounted for in the structure of the
normal form. For example, if we regard the experiments
as a weakly dissipative system then special features of the
underlying conservative dynamics may be important [6].
Indeed recent work has shown that normal forms incor-
porating a weakly imperfect time-reversal symmetry nat-
urally exhibit the near degeneracy previously introduced
by Silber and Krupa on an ad hoc basis [7].

In this paper, I consider a further symmetry, in addi-
tion to time reversal and I', that appears to explain
several puzzling features of the waves in square geometry
[8]. Physically this symmetry is a remnant of the hor-
izontal translation symmetry of an infinite fluid layer (no

sidewalls), but its conjectured role in the experiment of
Simonelli and Gollub (SG) is a subtle consequence of the
square container cross section and the relative weakness
of both viscous and capillary (surface tension) effects.
This additional symmetry cannot appear in circular ge-
ometry and its impact on waves in rectangular geometry
is less important. Unlike time reversal, even when this
symmetry is mathematically exact it is a true symmetry
only of the center manifold dynamics and does not belong
to the symmetry group of the fluid model, i.e., hydro-
dynamics plus boundary conditions [9]; that is, we have
an additional symmetry in the dynamics of the critical
modes that is not shared by the full theory. After dis-
cussing the evidence for this effect, I propose an extension
of the experiment of SG to test the theory; namely, to
study the bifurcation of standing-wave patterns in a
square container as the sidewalls are progressively dis-
torted to form a nonsquare cross section that retains
square symmetry [10].

For an incompressible, inviscid, irrotational fluid layer
oscillating vertically with a displacement A4 cos2xfot, the
free-boundary problem was formulated by Benjamin and
Ursell in terms of a velocity potential u(x,y,z,t) =Vg¢
and a deformation field for the free surface z =¢(x,y,t)
[11]. Incompressibility V-u=0 combined with the
boundary condition on the normal velocity A-u=0 at the
sidewalls and container bottom (z =—h) require V29 =0
and fi- V¢ =0 (sidewalls and bottom) for the potential. A
Neumann boundary condition (NBC) provides the sim-
plest compatible boundary condition on the free surface
[12],

A-VZ=0 (sidewalls) 1)
plus a kinematic boundary condition for ¢ on the interior
of ©. The boundary-value problem for ¢ is solved by

¢(X,y,Z,t) =Zmnbmn (t)ll/mn (x,y)H,,,,,(z), WhCI‘C Hm,,(Z)
= (Kpmp sinhkp,h) 7' coshim, (h+2z) and ., satisfies

VJZ.V/mn + K‘/%m Vmn =0, A Vi¥m =0 (sidewalls) . )

By virtue of (1) and (2), ¢ has an expansion ¢(x,y,t)
=23 n@mn ) Won(x,y) whose amplitudes satisfy the
Mathieu equation in linear approximation (t =2xfot):

d*amn
dr?
where @, =(0mn/27f0)? and Bpn = Ay tanhk,,h. The

+ (amn — BmnCOST )amn =0, 3)
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wave frequencies satisfy @2, = kmn tanh (b ) g+ Sxc2n/
pl, where g is the gravitational acceleration, § the surface
tension, and p the density [11].

If we take the cross section Q to be a square of length
7 on a side (Fig. 1), the geometric symmetry I' is gen-
erated by reflection about x =n/2 and reflection across
the diagonal, y;:(x,y)— (x—x,y) and y;:(x,y)— (p,
x), and the normalized eigenfunctions (2) are w.,(x,y)
=(2/n)cosmx cosny. For n=m, the eigenvalue k2, =m?
+n? is degenerate with two symmetry-related eigenfunc-
tions (pure modes): Wum =72 Wmn. However, the mixed
modes, Wis = Wmn £ Wam, provide a more natural basis set
for the eigenspace; these states are characterized by a di-
agonal reflection symmetry ¥ wim =+ y,m. Under
reflection in x, the transformation properties of y,m de-
pend on the even-odd parity of m +n:

+
Lyt =(—=1)mx {Ymn m+n even,
Y Yon =(—1) {WJ.Z, ot odd.

4)

For each (m,n) there is an infinite set of instability zones
in the (A4,fo) parameter space; in the presence of dissipa-
tion, the instability corresponding to subharmonic oscilla-
tions has the lowest threshold. Consequently, this is usu-
ally the first instability observed experimentally, leading
to standing waves at frequency fo/2.

The parameter space of SG is shown in Fig. 2 indicat-
ing some of the mode numbers of the observed standing
waves; a given transition is referred to below as even
(0dd) parity if m +n is even (odd). The relevant aspects
of the bifurcation to standing waves can be most simply
described by considering transitions found at frequencies
above resonance indicated by the arrows in Fig. 2. In
each case a continuous transition to a supercritical pure
mode is observed (either ,u, or w,, depending on initial

(0,0)

~

Q

PBC — |

(=T,-T) (m,—T)

FIG. 1. (a) The extension by reflection of a NBC solution on
(0,7) leads to periodic boundary conditions (PBC) on (—7z,7).
(b) The relation between the physical domain Q@ and the ex-
tended domain Q.
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conditions); furthermore, an experimental reconstruction
of the phase space reveals additional unstable mixed-
mode states. The bifurcation diagram is shown in Fig. 2,
diagram (a).

It is crucial to appreciate that when the mixed modes
transform under y, and y, as described above, this transi-
tion is relatively unremarkable for odd parity but quite
surprising for even parity [13]. With odd parity the
mixed modes are symmetry related, y,- w75 =5, and
therefore have the same eigenvalue; hence they have the
same dynamics (e.g., frequency and growth rate). This
degeneracy implies that linear combinations of W% are
also eigenstates with the same eigenvalue; which of these
superpositions can develop into standing-wave patterns
depends of course on nonlinear effects not included in Eq.
(3). For eigenstates transforming as w;5 above, the
simultaneous existence of both nonlinear pure modes and
nonlinear mixed modes is generically expected, however,
and bifurcation diagram (a) in Fig. 2 is well known [5].

By contrast the even-parity mixed modes w5t are not
interchanged by reflection in x: ;- waL =— W;Tr; conse-
quently they are not related by the geometric symmetry I’
(an observation made originally by SG). In light of the
discussion for odd parity, one immediately expects (i)
that w3 and w3 have different eigenvalues and different
dynamics; (ii) that the pure modes will no longer be
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FIG. 2. Parameter space for the Faraday experiment in a
square container showing the stability boundaries for the onset
of standing waves with various mode numbers (m2,n). The bi-
furcation observed along the paths marked by the vertical ar-
rows is represented in diagram (a). Solid branches are stable;
the branch pm represents both pure modes, ¥, and y.», and
he branch mm (=) represents the nonlinear extension of .
Diagram (b) indicates the effect on the even-parity transition of
deforming the cross section as in Fig. 3.
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“eigenstates and consequently will not appear as primary
branches in the bifurcation diagram, and (iii) that the in-
itial standing-wave pattern will have diagonal reflection
symmetry (even or odd depending on whether 3 or w3
becomes unstable first). However, all of these expecta-
tions appear to fail in the experiment. Moreover (i) and
(ii) also fail in the linear theory of Benjamin and Ursell:
wir have the same eigenvalue and the pure modes are
eigenfunctions.

It is natural to suspect that v/ﬁ are somehow symme-
try related after all, and this connection was recently es-
tablished for the model of an ideal fluid layer obeying
NBC as in Eq. (1) [13]. The idea is illustrated in Fig. 1:
With NBC, a standing-wave pattern can be smoothly ex-
tended by reflection in x and y to give a solution to the
corresponding free-boundary problem posed on the larger
domain Q with periodic boundary conditions (PBC).
The geometric symmetry I" of Q is generated by 7
(reflection in x about x =0), y, as before, and transla-
tions in x and y (due to PBC). Thus we can solve the
original problem by calculating the bifurcation of stand-
ing waves posed on @ with PBC and then restricting to
those solutions that also satisfy NBC on Q. The benefit
of this viewpoint is it allows one to recognize special
features in the original problem that are inherited from
the larger symmetry I on O [14]. For example, the
eigenstates (2) on € have the form wnm =expli(mx
+ny)] and the physical mixed modes w,,,,, can be written
as linear combinations of ¥, and I-related states by
reexpressing the Fourier expansion of y/,;,r,,:

+
Ymn

Here each term in Eq. (5) represents an eigenstate for
the same eigenvalue x,,, and hence w,,%, must have the
same eigenvalue; this explains the degeneracy of the
mixed modes with even parity. The implications of the
larger symmetry I" for the nonlinear behavior of waves
satisfying NBC on Q can be studied using appropriate
normal forms; one finds that indeed the simultaneous ap-
pearance of pure and mixed-mode branches is expected as
described by Fig. 2 [13].

The extension from I to I requires NBC on an initial
cross section Q such that reflection in x and y yields PBC
on the extended domain. The theory can be tested by de-
forming Q to a cross section Q' which lacks this property
while retaining the geometric symmetry of Q. Thus we
are led to consider cross sections Q' having nonsquare
boundaries but square symmetry as illustrated in Fig. 3.

The effects of such a deformation on y/,%, are easily
calculated in the model of Benjamin and Ursell by noting
that the geometry of the cross section enters the linear
frequency w,,, only though the eigenvalue x,,, in Eq. (2).

J
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FIG. 3. Top: The deformation y =€5(x) yields a nonsquare
cross section with square symmetry. Bottom: The frequencies
Smn of the modes in Fig. 1 for 6(x)=sinx. Mixed-mode fre-
quencies frs are denoted by (m,n) *.

(y2 Won T 1271 Won F 717271 Wnn + 71727 Wnn) ] Q)

Apmmn) Vmn t (@A pnnm + b Anmnm ) an] + Z ——T

Given the effect of the deformation on «,,, one can de-
scribe the perturbed patterns and shifted frequencies for
the standing waves. Denote the deformation of Q by
y=e8(x) as indicated in Fig. 3; the eigenfunctions
¥, (x,y) on Q' satisfy V>¥,,+k2,¥,, =0 subject to
A V¥, |30 =0, where 80’ denotes the boundary of Q.
By introducing the Green function for the unperturbed
problem we write an integral equation [15] for ¥,,,,

Vo () =3 ""’q(") f s Wy (e () Vo (x(5))

i Ko ®)

and solve for ¥,,, and k2, iteratively using the initial
choice

r£31)=a|ﬂ/mn+b‘l/nm . (7)

Here a and b represent the amplitudes of the unperturbed
states in an a priori arbitrary linear combination satisfy-
ing the normalization a?+b2=1. Inserting Eq. (7) into
the right-hand side of (6) yields ¥\.) in the presence of
the perturbation:

laAmnpg +bAmmpgl,  (8)

rq kmn Kpq
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where the sum on p,q in Eq. (8) omits (#,n) and (n,m).
The overlap integral (around the perturbed boundary),

Amnpq'E Bﬂ'ds Wmn(X(S))ﬁ‘vl//pq(X(S)) s )]

vanishes when € =0 and can be shown to satisfy two iden-
tities: (i) For arbitrary indices mnpq, Amnpg=Anmqp, and
(ii) when either m+p or n+gq is odd, Aymp,=0. Con-
sistency between (7) and (8) now requires

- aAmnmn+ b Amnnm
a=Ilim 3 3 s
e—~0 Kpin = Kinn
(10)
. aAmnnm + b Amnmn
b=1Iim 3 3 .
e—0 Kimn — Kmn

Forming the ratio of these two equations and cross multi-
plying yields

(a2 — p2) FAmmm.

de

this constraint is identically satisfied for odd parity when
Apinnm =0, but for m +n even, we must take a>=b2 or
b==+g and a=1/v/2. Thus the mixed modes v, are
the correct basis set to treat the perturbation for even
parity. After setting a=1/+/2 and b=+ 1/+/2, the per-
turbed eigenstates can be written as

=0; an

e=0

Y= -1-—[1 +0(e)ly.%

V2
1 Amnpq'/’p% 2
— 2 ———=—40(e?). (12)
\/5% (kmir_l)z_xgq

The eigenvalues for the perturbed mixed modes follow
similarly from Eq. (10),

(k)2 =1x20 + Amnmn + 0 (D)1
+ [Aynm + 0], 13)

and the perturbed wave frequencies are given by
(0,5) 2=k, tanh (ks ) [g+ 8k )?/p).  As expected
from the symmetry analysis, the wave frequencies split
only if the parity is even since the deformation breaks the
I" symmetry but not the square symmetry; this splitting
should be observable. For parameters of Ref. [10] and
the particular deformation &(x) =sinx, the frequency
variation with ¢ based on Eq. (13) is shown in Fig. 3.
Note also that the perturbed wave patterns in Eq. (12)
still correspond to mixed modes in the sense that the di-
agonal reflection symmetry is retained, y»- vE =+ \I/,,’,—;,
although there are now many wave numbers present in
the pattern.

The variation of the nonlinear behavior with € is not
fully understood especially in the neighborhood of the
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mode interactions (i.e., points of multiple linear instabili-
ty). For the specific bifurcation diagram in Fig. 2(a), the
splitting of the linear eigenvalues for the mixed modes
should lead to the perturbed diagram of Fig. 2(b). In
this diagram the mixed modes now branch independently
from the basic state. The reflection symmetry of the
stable mixed mode is subsequently broken in a secondary
pitchfork bifurcation yielding states which at large ampli-
tude (and small €) resemble the pure modes of the unper-
turbed system.
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2. The hospitality of the Aspen Center for Physics where
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