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We relate the complex solutions of the thermodynamic Bethe-ansatz equations to the excited states in
factorizable massive models. This approach permits one to recover exactly the ultraviolet behavior of
these excitations. In order to illustrate our method we consider several unitary and nonunitary inte-
grable models. We also comment on the calculation of critical exponents in massless integrable models.
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Conformal invariance [1] and integrable models [2]
have been important subjects in (1+1)-dimensional
quantum field theory. Recently, a new insight has been
added. It has been argued by A. Zamolodchikov that
particular perturbations around conformally invariant
models lead to integrable theories [3,4]. The massive
spectrum and the respective S matrices can be predicted
by using symmetries, conserved charges, and bootstrap
equations [4]. The relevance of these S matrices needs to
be verified by studying, for example, the ultraviolet limit
of the respective massive theory and then making the con-
nection with the initial conformally invariant model. The
Green’s functions can be constructed in principle by solv-
ing Watson’s equations [5] using the known S matrices,
and the ultraviolet limit may then be taken. Unfor-
tunately, this program has proved too cumbersome, and
up to now only the scaling Ising model has been solved
through this approach [6]. However, Al. Zamolodchikov
has pointed out that a relativistic version of the thermo-
dynamic Bethe ansatz [7,8] permits one to study the
ground-state energy for finite temperatures. The Casimir
effect for the free energy is then related to the effective
central charge of the corresponding conformal field
theory [9]. We will henceforth refer to this method as
the TBA approach. The extension of the TBA approach
to excited states remains, however, a challenging open
problem.

The purpose of this Letter is to show that the TBA ap-
proach also contains information about the lowest excited
states [10] of massive theories that possess a symmetry.
Fortunately, there are several models that have this prop-
erty including, for example, tricritical Ising, three-state
Potts, tricritical three-state Potts models, and parafer-
mionic field theories. We will consider these models and
some nonunitary theories as examples of our approach.
We will show that certain excited states are related to
complex solutions of the TBA equations with correspond-
ing real free energy. In the usual approach complex solu-
tions are hypothesized in the Bethe-ansatz framework
[11], and are tested by explicit diagonalization of the as-
sociated Hamiltonian or transfer matrix [12]. By con-
trast, although we have not recovered all the conformal
scaling dimensions, in our approach the complex solutions
(excitations) are obtained by studying the high-temper-

ature TBA equations, without making any hypotheses.

We also should mention that our approach will be impor-
tant in theories characterized by the same central
charges, but with different modular partition functions
[13].

The TBA equations are usually obtained in two steps.
First, one writes the Bethe-ansatz equations for the
respective factorizable S matrices. The associated entro-
py is then written in terms of the densities of levels and
particles, and the thermodynamics is encoded by mini-
mizing the free energy [8]. For a typical theory with N
particles and diagonal S matrices, the TBA equations and
the respective energy [E(R)] at temperature 1/R are
given by
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where L;(¢;) =In(1+e ~€®), m; is the mass of particle i,
and y;; is a function given in terms of the two-particle
scattering amplitude S;; by y; =—idInS;;()/d6. In
Eq. (2) we wrote the function E(R) in a convenient way
for taking the ultraviolet limit.

We start by studying the tricritical Ising model
(c= 1) perturbed by the subleading energy perturba-
tion. Although the associated S matrices are not diago-
nal [14], the TBA equations have the same form as Eq.
(1), where my=m, my=0, y|1 =y2=0, yi=yy =1/
cosh(6) [15]. In the ultraviolet limit, R— 0, the vari-
ables x =exp(¢), e=¢; =¢,, tend to constants satisfying
the quadratic equation x2+x —1=0. The first solution
x1=(—1++/5)/2 gives the ground-state behavior, E (R)
=(2n/R)(—7/10). The second solution x,=—(1
++/5)/2 is imaginary in the ¢ variables, and appears as a
solution of Eq. (1) with an additional complex iz term

oo —€,(0)
1 f 40 In(1+e )

+_
€ cosh(6—¢6')

+in=mR cosh(9) ,
2rJ —e

(3)
JIn(1+e 99

+ir=0.
cosh(6—6") in=0

et f a0

© 1991 The American Physical Society 419



VOLUME 67, NUMBER 4

PHYSICAL REVIEW LETTERS

22 JULY 1991

The ultraviolet limit of Eq. (3) is delicate, but using the convenient shift ¢ =& — i, this limit can be easily computed

using standard calculations [7], and we find for R— 0
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where L(f9) is the Rogers dilogarithm function [16]
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Using the exact values, L((~/5—1)/2)=—1/20 and
L(1)=—1/12, we see that E(R)=Qx/R)(3/40— %/
12) is in accordance with the conformal dimension
A=3/80 for the tricritical Ising model. We note that the
previous shift of variables changes the function L;(e(6))
to In(1—e ~'?’). This fact was first observed in a class
of nonunitary M3 3,+ integrable models [17], motivated
in the scaling Ising model. We can perform the same
analysis described above for this nonunitary model, and
we find that only the TBA equation of the lightest parti-
cle has a complex term. This complex solution corre-
sponds to the conformal dimension of the operator ¢; ,+
in the Kac table of M3 3,+ (lowest excited state).

The three-state Potts model (¢ = %) perturbed by the
thermal operator is a very interesting example in our ap-
proach. In this theory we have a particle and an antipar-
ticle scattering with the S matrices given in Ref. [18].
Using these known .S matrices, we have solved Eq. (1) for
R— 0 in terms of the variable x =exp(e). We find two
solutions x =(1 =+/5)/2. The positive solution is related
to the ground state. The negative solution is complex in
the € variable, namely, €, =¢F. In this case we should
add a phase term = 27i/3 to the left-hand side of Eq.
(1). The ultraviolet limit has an extra term due to this
phase, which should be added to the usual Rogers diloga-
rithm terms. The extra term has been evaluated to be §,
so that we have
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giving the dimension A = 5, which appears in the modu-
lar invariant partition function of the three-state Potts
model [13].

The next example is the tricritical three-state Potts
model (c=$%) perturbed by the thermal operator. The
respective S matrices are related to the exceptional Eg
group [19]. Again, the complex solution corresponds to
adding phases = 27i/3 in Eq. (1). The calculation of the
ultraviolet limit is now more complicated and we only
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Using the magic sum rule XSL(f;)=—13/42 we find
F=2/21—%/12, in accordance with A=1/21 for the tri-
critical three-state Potts model.

Another beautiful example is the Z(5) parafermionic
field theory [18,20]. In this model we find two complex
solutions (adding phases proportional to = 27i/5) which
are associated with the order-disorder fields with anoma-
lous dimension A =2/35, 3/35.

We can also compare the numerical results of the TBA
equations with perturbation theory by the respective con-
formal operator. For example, solving Eq. (3) numerical-
ly for mR <1, we can compute the values of the scaling
function F(mR). The first term in the expansion of
F(mR) in powers (mR)*? is proportional to the structure
constant C(2,2)(1,3)(2,2) of the tricritical Ising model. Our
numerical estimate is 0.15258, in good agreement with
the exact value [21]

c | L) 0.152576
22a»e) = ¢ () . R
Finally, we mention that the ideas discussed above can

also be applied to critical integrable models. It is known

that the operator content of the integrable Heisenberg

spin-s chain is a composition of a free-bosonic field and a

Z(2s)-invariant model [22]. Our results together with

previous work [23] predict exactly the lowest exponents

x=3% (s=1), x=7 (s=3/2), reproducing the known
anomalous dimensions of the two-dimensional Wess-

Zumino model [24].

We believe that the results of this Letter are the first
steps toward the generalization of the TBA approach to
excited states. A more detailed account of this work, in-
cluding a discussion on the completeness of the complex
solution and applications of our approach to integrable
critical models, will be published elsewhere.
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