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Breathing Vortex Solitons in Nonrelativistic Chem-Simons Gauge Theory
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We present exact solutions for breather solitons in the (2+1)-dimensional Chem-Simons gauge
theory with external magnetic field 8. The breather soliton is a time-dependent solution whose size is os-
cillating and whose center of mass moves in a cyclotron motion. These solitons describe how the
Jackiw-Pi solitons behave in the external magnetic field. We then apply the Bohr-Sommerfeld semiclas-
sical quantization to the breathing mode and the cyclotron motion. It is found that the orbital angular
momentum takes on an integer value and that the quantum soliton is in the Landau level.

PACS numbers: 03.65.6e, 11.10.Lm, 11.15.—q, 11.17.+y

Recently much attention has been paid to vortex soli-
tons in the (2+1)-dimensional Chem-Simons (CS)
gauge theories [1-6]. These vortex solitons are anyons
[7], and play a crucial role in the fractional quantum
Hall effect (FQHE) [8] and in anyon superconductivity
[9]. See also Refs. [10] and [11].

In order to study the solitons in detail it is useful to
have exact solutions. Jackiw and Pi (JP) [3] have found
analytic solutions of the vortex solitons in a nonrelativis-
tic CS gauge theory. The solutions are obtained by solv-

ing a simple self-dual equation derived by taking a limit
of the critical coupling constant just as in the case of the
Prasad-Sommerfield monopoles [12]. Their model does
not involve an external magnetic field, although this is an
essential ingredient for its application to the FQHE.

In this paper we analyze their model by including an
external magnetic field, and present analytic time-de-
pendent solutions of vortex solitons. These solutions are
reduced to the JP solutions in the limit of vanishing exter-
nal magnetic field. Therefore, our solutions represent
how the JP solitons behave in the external magnetic field.
As is expected, they make a cyclotron motion. We also
reveal a breathing mode of the solitons, i.e., the oscilla-
tion of the length scale of the solitons. This breathing is
an internal motion of the solitons induced by the external
magnetic field. We then apply a semiclassical quantiza-
tion to the breathing mode and the cyclotron motion. It
is found that the orbital angular momentum takes an in-

A; = —(8/2)si)xj, (3)

and a is the statistics parameter. We have chosen the
electromagnetic coupling constant of y to be —e and the
CS coupling constant to be unity. When 8 =0, the action
becomes the one which JP analyzed.

It is a special feature of this model that there is an
SO(2, 1) symmetry [4] in the absence of the external
magnetic field. The generators are the Hami1tonian 0,
the dilation generator D, and the special conformal gen-

teger value and that the soliton is in the Landau levels.
As far as we know, our exact solutions are the first exam-
ple in which these features are discussed for quantum sol-
itons.

We consider a (2+1)-dimensional nonrelativistic CS
gauge theory with a uniform external magnetic field B.
The system consists of the CS gauge field a„and the
Schrodinger field tit coupled with it. The action reads

5= d'xX, (1)
with

1L= Vt (ir)o+ao)tit V—t (i&k+at, —eAt, ) Vt
2fPl

++(+t )2 1
(2)

The latin index runs over 1,2 and the greek index over
0, 1,2. Here, AI, is the external magnetic potential such
that
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(4)

x x'=n(t) 'x, t —t'= dr n(r)4 p

erator K. In particular, when B=0, the action (1) is in-
variant under dilation:

x x=0 x, t t =0 t,
l/i —y' = n y(t, x),
ak ap =Gap, ap ap=Q ap,

where 0 is a constant. When the external magnetic field
is switched on, only the Hamiltonian remains a conserved
quantity. It is interesting to analyze explicitly the rela-
tion between the external magnetic field and the break-
down of dilation invariance, which helps us to construct
soliton solutions in the presence of the external magnetic
field.

For this purpose we consider a time-dependent dilation
[i3]:

%e conclude that the system with external magnetic field
8 is related to the system without 8 by the transforma-
tion (8). Consequently, we are able to create solutions of
the system with 8 from those without 8 by using the
above transformation.

When the coupling constant g takes a critical value g,
with

g, =2[a[/m,

the action (9) with (10) gives rise to a self-dual equation,
which is the Liouville equation [3]. The JP soliton solu-
tions are given by

l/i(x) =exp i (N I)&(r)—

. mr' ti n«)
I/I ~ l/r (t, x ) = n (t ) exp l

2 n(t) l/i(t, x), (5)
2

rp

' N
rp

r
(i2)

cos(tot/2) sin(tot/2)
—sin(cot/2) cos(tot/2)

The effect of this is to remove the term l/i' (elk/
2m)(itl' +a/)l/i' from the Lagrangian density. The com-
bined transformation is

=2 1t"=—tan(alt/2), x"=
t „(,/2)N

tan(rot/2)
X,

(8)

y"(t",x") =cos(tot/2)exp i r tan(tot/2) l/i(t, x),

V

a„—ap(t', x') = a„(t,x),
X

which reduces to (4) for constant n. Because this is not
a symmetry of the system, its application leads to a
modification of the dynamics. When we choose

n(t) = cos(cot /2), co =eB/m, (6)
it turns out that the harmonic-potential term l/i' t(e Ak/
2m)l/i is removed from the Lagrangian density. We next
consider the time depend-ent rotation:

t' —t"=t',

and

a;(x) = —2N 1+Q &ij rj rp

[af r' r

' 2% —
1

The spin S of the soliton is defined by the total angular
momentum J of the static soliton, i.e., S=J with

1 J d x Gijxi Pj

where

(15)

Pj =(1/2i)[l/i (tij —iaj)l/i (BJ+ia, )—l/r y) .

Hence, using (12) and (13) we find that

where r =x —2R, 8(r) =tan(r /r '), and N=2, 3, . . . .
Here, R and rp are free parameters. The center of the
soliton is placed at 2R and its scale is fixed by rp. It is
obvious that the energy of these solitons does not depend
on ro and R because of the dilation symmetry and the
translation symmetry.

The electric charge eg of this soliton is given by

2'
eg =e d'x l/ill/i= e.

a„"(t",x")= „a,(t,x) .x"" 5 = —2ttN/a .

S= d x"X", (9)

with

This is a unitary transformation since fd x l/i l/i is invari-
ant. It is straightforward to show that after this transfor-
mation the action reads

The mass M of the soliton is determined as follows. By
performing a Galilean boost, we obtain a vortex soliton
moving with velocity V. Evaluating the energy we get
that E =

& MV with

2'M=mg=m d x l/itl/i= m.

~"= y"'(/rio'+ ao') y" — y"'(i~/, '+ ak') 'l/
"

2m

+ +(l/I l/t ) 8 ap 6~g
2 4a

(io)

Thus, the charge-mass ratio eg/M of the soliton is equal
to e/m.

We now present time-dependent soliton solutions,
which are generated by performing the transformation
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(8) to the static solutions (12) and (13):

and

r(t)
I pcos(cot /2)

r 2/V ' —
1

8;g rj (t ) rpcos(tot /2)a tx = — '', 2N1+
lal r(t)' r(t)

y(t, x) =exp —i x tan(cpt/2)+ (N —1) exp i (N —1)8(r(t))
lal

i/2 lY Ni
N + rpcos(cot /2)

r(t) r(t ) (19)

(2o)

where r(t) =x —2R(t) with
r

c os( tot /2 ) —sin

(cot�/2

)
R(t) =cos(tot/2) ( /2) ( /2) R. (21)

eB xEs=-
rn a
e 2B2~2r 2

Eg=
4l aim sin(tr/N)

'

Ec=MV /2, (26)
with (18) and (22). The third term Ec is the kinetic en-

ergy of the cyclotron motion, which confirms the
identification of (18) as the mass of the soliton. The
second term Ez is understood as the energy of the breath-
ing mode because it is proportional to the square of the
amplitude ro of the breathing mode; note that it vanishes
as ro 0. The first term Es is independent of r 0 and V,
and therefore is independent of the breathing mode and
the cyclotron motion. It is reasonable to understand Es
as the energy of a spin-magnetic-field interaction. Then,
we may rewrite this term as

Eg = gg(eB/2m )S, — (27)

(25)

This soliton is located at 2R(t) and makes a circular
motion with the radius R and the velocity V, with

V=coR . (22)
It is also breathing, which means an oscillation of the
scale of the soliton; the scale parameter ro is the ampli-
tude of the breathing mode.

The frequency of the cyclotron motion is eQB/M
=eB/m =to, as is expected. The only unexpected result
is the breathing mode. However, the breathing is obvious
from a mathematical point of view, since our time-
dependent solutions are constructed by performing a
time-dependent dilation (5) to the static solutions.
Therefore, any soliton solutions in the system (10) may
begin to breath when the external magnetic field 8 is
switched on. This is true even for the model with a gen-
eral value of the coupling constant, g&g„although no
analytic solutions are known in such a model. Further-
more, this conclusion is applicable to any dilation-
invariant theory.

The energies of the above time-dependent solitons are
calculated as

E =Es+Ea+Ec, (23)
where

J=S+eBtrR N/lal =S+MVR/2, (31)
where 5, M, and V are the spin, the mass, and the veloci-
ty of the soliton: R is the radius of the cyclotron motion.
It is curious that the orbital angular momentum is half of
what is naively expected, i.e., MVR. As we now show,
precisely this result leads to a consistent quantization of
the orbital angular momentum. The result (31), together
with (29), implies that the motion of the soliton cannot
be simply simulated by a spinning particle making a cy-
clotron motion.

We finally consider a Bohr-Sommerfeld semiclassical
quantization; see, e.g., Ref. [14). It is trivial to see that
the action of our time-dependent solution vanishes. This
is because the value of the action is not modified by
switching on the external magnetic field; see (1) and (9).
Consequently, we achieve the following quantization of
each mode of the breathing and cyclotron motion:

E~ T =2~p, EcT =2zq, (32)
with integers p and q; here, T =2'/tp is the period of the

where S is the spin of the soliton, (17), and gs = l. It fol-
lows that the g factor of the soliton is l.

We also calculate the current I of the soliton solution:

I =(1/2m)i[@ Dy —(Dier) yl, (28)
with D; =8; —ia;+ieA; Apa. rticularly interesting quan-
tity is the 0 component of I. It is an internal current as-
sociated with its spinning. Hence, we set R=0 in (21).
Then, the soliton is breathing but its center of mass is at
rest, for which we find that

Ne8 mdrI~=— Q (29)
2mlal 4'

where Q is the statistical charge of the soliton. The result
might be interpreted as the current generated by a spin-
ning disk with the frequency to/2 where the charge Q is
distributed. However, this frequency is half of the proper
frequency of the soliton.

Another important quantity is the orbital angular
momentum of our rotating solitons. To calculate this
quantity we shift the center of the cyclotron motion to the
origin of the coordinate. This induces a phase of the solu-
tion such that

y exp[ —i (eB/2)e~x; R~] y. (3o)
Substituting this into the total angular momentum (15),
we obtain
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motion. It turns out that quantum solitons are in the
Landau levels. By these quantization conditions, the free
parameters ro and R of the breather soliton are quantized
and become functions of m and B. Condition (32) also
implies that the orbital angular momentum becomes in-

teger, as it should:

MVR/2 =q . (33)

Therefore, the semiclassical quantization of the cyclotron
motion leads to a consistent quantization of the angular
momentum.

In this paper we analyzed the CS vortex solitons in the
external magnetic field 8. We have shown that, if the
system without 8 is invariant under dilation, it is possible
to construct soliton solutions in the system with 8 from
those in the system without 8 by performing the transfor-
mation (8). The resulting solution is time dependent,
which describes a breather soliton making a cyclotron
motion. In particular, we have obtained analytic time-
dependent solutions in the JP model by switching on the
external magnetic field. Semiclassical quantization of
these time-dependent solitons has also been made success-
fully. Although we have only considered single-soliton
solutions in this paper, it is trivial to generalize our
method to construct time-dependent multisoliton solu-
tions in the external magnetic field simply by using the JP
multisoliton solutions [4].

We would like to thank S. Takagi for helpful discus-
sions on the subject of this paper.

Note added. —After submitting this Letter we learned
from Jackiw and Pi that the time-dependent dilation (5)
was previously considered by Jackiw [15]. They also in-
formed us that using a diAerent gauge from ours they
have applied a semiclassical quantization to our time-
dependent periodic solitons [16]. Their result does not
coincide with ours. As they point out this is due to the
gauge noninvariance of the CS action. This noninvari-
ance comes from nonvanishing boundary contributions in
the time direction associated with partial integrations,
while boundary contributions in the space direction
should vanish when the gauge invariance of the Lagrang-
ian L =Id xX is imposed at the classical level. Let us
consider a gauge transformation, y e' y, a„a„
+8„A. In applying semiclassical quantization, the al-
lowed gauge transformations are such that A(t+ T)
=A(t ) + 2tr/ with l being an integer; here, T is the period
of the classical motion. Now, it is trivial to see that the
action is transformed as fd x X fd x L —trlQ, where
the time integration is over one period. %'hen a gauge
transformation is performed, we obtain classically
equivalent solutions. However, quantum mechanically,
they are diA'erent objects if the action is diAerent. %'e
are led to conclude that in the semiclassical treatment the
U(1) gauge transformations in the soliton sector are

classified into infinitely many inequivalent classes indexed
by an integer I. Corresponding to each class there is a
quantum soliton whose action is given by tr/Q. %'e need
to take into account all of these solitons. It is easy to see
that the quantization condition E&T =2xq for the cyclo-
tron mode holds even if the action is nonzero. Then, the
total energy of the soliton reads E = to (p +q ) —(al/
~tt~)(eB/2m)S. It implies that the g factor of the quan-
tum soliton may be an arbitrary integer l.

We acknowledge correspondence with R. Jackiw and
S.-Y. Pi which motivated us to consider the problem of
inequivalent gauges in the CS soliton system, although
their formalism is diff'erent from ours on this point.
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