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Interaction of Spirals in Oscillatory Media

Here Vx is the slowly varying local wave number, co = —c
+(b —c)Q is the frequency of the asymptotic plane
wave with wave number Q, and b, c are the linear disper-
sion and the nonlinear frequency shift [3]. The Hopf-
Cole transform x = —ln(W)/a, with a =(b —c)/(1+bc),
leads to the linear equation

a, W = (1+bc) (~'W P'W), — (2)

with p = (b —c) (co —c)/(1+ bc) . The isolated one-arm
spiral solutions are of the form (r, p are polar coordi-
nates) W=e ' ~"(pr) ' [1+O(r ')], pr&&1, with
P=~aQ~. Since (2) is linear and spirals have an ex-
ponential decay in this representation, well separated
multispiral solutions are given by a superposition of iso-
lated spirals. This superposition after the nonlinear
Hopf-Cole transformation includes the shocks. Clearly
the residual interaction reflects the exponential decay of
the isolated-spiral asymptotic behavior. Using the poten-
tiality of (2) one finds for a spiral pair that the (small)
radial velocity resulting from the interaction is indepen-
dent of the topological charges, in contrast to the results
of Refs. [1] and [2], and has the form v„=r'~2= C
x exp( —pr ~ z)/(pr ~ 2) ', pr ~ 2 && 1. The constant C de-
pends on the parameters b and c and can be positive
(repulsion) or negative (attraction). The tangential ve-
locity has the same form but the sign depends on the to-
pological charges. Thus oppositely charged spirals drift
perpendicularly to the line connecting the cores and like-
charged spirals rotate around their symmetry center.

Very detailed numerical simulations are in quantitative
agreement with the analytical results (see inset of Fig. 1).
For the case shown (b =0 and c =1) one has an asymp-
totic attraction which changes into repulsion for b =0 and
c =1.5. Also shown are the radial and drift velocities for

Recent studies of topological defects in oscillatory
tnedia (spirals) within the framework of the complex
Ginzburg-Landau equation (CGLE) [1,2] claim that the
asymptotically dominant interaction term is a long-range
radial interaction falling off like r~2 (r~2 denotes the sep-
aration of spirals). This was obtained by assuming a
direct superposition of isolated spiral solutions far away
from the core. The ansatz must fail in general, because
the waves emitted from the cores collide and the resulting
sources or sinks (shocks) do not vanish for r

~ q

We show that the shocks lead to an exponentially de-
caying interaction by starting from the nonlinear phase
equation in the long-wave limit valid far from the cores,

r), ~=~ c+(b— c)(V—x)'(1+bc)V v.
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FlG. 1. Radial (solid) and drift (dashed) velocities of oppo-
sitely charged pair for b =0 and c =1. Note the blown-up scale
for r]2& 25. Inset: The asymptotic behavior of the radial ve-

locity. Diamonds give numerical results. Solid line represents
theoretical dependence with C= —3.2 and Q =0.3 (value for
free spiral).

a large range of r]2. One sees the existence of a drifting
stable bound state with v„=0 and dv, /dr~q (0. For like-
charged spirals we observed that the drift is replaced by
rotation. The equilibrium distance is close to the wave-
length 2tr/Q.

The numerical results shown in Ref. [4] represent only
the initial (transient) stage of the spiral dynamics where
the motion is much faster than under steady-state condi-
tions. Our numerical results for the equilibrium distance
are in conflict with the expression given in Ref. [2].
Presumably our results hold quite generally for oscillating
and even excitable media because the far field can be de-
scribed universally by Eq. (1) [3].
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