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Three-Dimensional Structure of Induced Electrorheological Solid
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The induced electrorheological solid has thick columns in the field direction (z axis), spreading be-
tween two electrodes. The ground state is proposed to be a body-centered tetragonal (bct) lattice with

a[ &6ax, ap J6ay, and a& =2az, where a is the radius of dielectric spheres. This bct lattice can be
regarded as a compound of chains of class 2 and 8, where chains 8 are obtained from chains 2 by shift-
ing a distance a in the z direction.

PACS numbers: 82.70.Gg, 61.90.+d, 64.75.+g

There has been an enormous resurgence of interest in
the field of electrorheological (ER) Iluids during the last
couple of years [1]. An ER Iluid consists of a suspension
of fine dielectric particles in a liquid of low dielectric con-
stant [2-7]. Its viscosity increases dramatically in the
presence of an applied electric field. If the electric field
exceeds a critical value, the ER Auid turns into a solid
whose yield stress increases as the field is further
strengthened. The phenomenon is completely reversible
and the time scale for the transition is of the order of mil-
lisecond. This property makes ER Auids attractive for
many futuristic technologies [1].

In a recent work [3,4], we pointed out that the nature
of ER Auids lies in electric-field-induced solidification.
At a fixed temperature, there is a critical electric field E,.
As the applied electric field exceeds E„the phase transi-
tion occurs: ER Auids turn into a solid. However, the
question about the structure of the induced ER solid is

open, and has attracted great attention for its relationship
to the properties of ER Iluids. In a recent Letter [5],
Halsey and Toor claimed that dielectric particles in ER
Auids form columns, spreading between two electrodes.
Each column has a width —a(L/a), where a is radius
of dielectric particle and L the distance between two
parallel electrodes. As for the structure of columns, they
are uncertain, but suggested a face-centered cubic (fcc)
lattice.

In this Letter, we report a body-centered tetragonal
(bct) structure which has an energy lower than that of
the fcc lattice and other structures. We believe this is the
ground state of the induced ER solid.

Consider a model which has been widely used in the
study of ER IIuids [5-7]. The model has spheric dielec-
tric particles of dielectric constant e~ suspended in a
liquid of dielectric constant t..~, ep & tI. The Auid is con-
fined between two infinite parallel electrodes which are
denoted as z=O and z=L. When the electric field is ap-
plied, the spheres acquire dipole moments in the z direc-
tiotl, p =QeIa E)o~, wllele tr = (ep eI)/(ep+ 2EI) and

E~„is the local electric field. E~„and p will be deter-
mined self-consistently later. The total Coulomb energy
includes both the dipolar interaction and the interaction
between dipoles and the external field. As will be shown,

when the dipolar interaction energy is minimized, the to-
tal Coulomb energy is minimized. Therefore, we consider
the dipolar interaction energy first. Two dipoles at r; and

rj have an interaction

U(r;, ) =v(1 —3cos'0;, ) /r;,
'= —v 2+p 1

~IJ

where r;~ =
~
r; —rt ~

= [p + (z; —z, ) ] 'I is the distance
between them, p=[(x; —xI) +(y; —y, ) ]', 0= 0;,~ tr/2 the angle between their joint line with the z direc-
tion, and v=p /eI. Since two dipoles cannot overlap, we
also add a hard-core interaction to the dipolar interac-
tion. A dipole p inside the capacitor at (x,y, z) produces
an infinite number of images which also interact with the
dipole itself and other dipoles. All of its images have the
same dipole moment p and are at (x,y, —z) and
(x,y, 2Lj ~ z) for j = +' 1, ~ 2, . . . . The interaction be-
tween a dipole with an image produced by another dipole
has the same form as Eq. (1). However, the interaction
of a dipole at r; with one of its own images at rj is given
by —,

' U(r;~). At a suKciently strong electric field or low

temperature, the electric field exceeds E, and an ER Auid

becomes a solid. This is because the Coulomb interaction
becomes dominant, compared with the kinetic energy
[3,4]. The induced solid structure must be the config-
uration which minimizes the Coulomb energy.

In the experiments and molecular-dynamics sirnula-
tions, it has been found that upon application of an elec-
tric field, the dielectric particles in ER Auids first form
chains between two plates [2-7]. Chains then aggregate
to form columns. The formation of chains is easy to un-
derstand because the dipolar energy has its minimum
when two dipoles join together and a1ign in the field
direction. The interaction between chains is the subject
of our study.

A chain, i.e., a line of particles between the two plates,
combining with its images becomes an infinite chain. We
will discuss some diAerences between a physical infinite
chain and a finite chain with its images. For the moment,
we consider the structure consisting of physical infinite
chains. Without loss of generality, we consider a chain
having particles at r =2aji (j=0, ~1, ~2, . . .). The
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self-energy of the chain is given by

g U(r; —r~) = —,
' g U(r; —r~) . (2)

As r; —rj=2a(i —j)i, the self-energy per particle in an
infinite chain, uo, is

up= —
3 g = —0.300514v 1 V

4a s=1 5 a
(3)

8 1

Let
(4)

Consider the interaction between this chain and a dipole

p at r =p+zi,

interaction energy per particle, u, is up+ —,
'

U;(p, z) be-
cause all dipoles in the second chain have coordinates
(p, z+2aj) (j =0, ~ 1, + 2, . . .). The factor —,

' comes
from the fact that the interaction energy is shared by
both dipoles. If these chains are far apart (p ~),
Q =00. When p =2a and z =0, the two chains are repul-
sive, and u = —0.291405v/a is high. The minimum of
u, —0.3227268v/a, is obtained when the second chain
has coordinates p =J3a and z =a.

We define infinite chains with their dipoles at zf =2ja
(j=0, +'1, +'2, . . .) as chains of class 4 and infinite
chains with z, = (2j+ 1)a as chains of class 8. To benefit
the dipolar interaction, the ER solid must have chains of
both classes A and B. Two chains of the same class are
repulsive, and otherwise they are attractive, namely,

f(p, z)= X [p'+ (z —2ja ) '] ' '
Since the periodicity, f(p, z) =f(p, z+2a), we can ex-
pand f into the form

and

Ugg(p) —Uee(p) —,g 2x s Kp
a s=l a

Uge(p) =-
3- g 27' s Kp cos(srr) .

a s=l a
f(p, z) = g f, (p)e

Then we have

f 2a iszz/a

fs(p) = X
J = —- [p +(z —2ja) I

XS 5KP
l

a p a

where K
~ (x) is a modified Bessel function. We have

(5)

These interactions are short ranged and bear some simi-
larity to the Yukawa potential. The problem of structure
of ER Auids is equivalent to finding the ground state for a
two-dimensional system which has two classes of parti-

(a)

f( )
1 + g 2xsK sxp $7cz (6)

The formula dxK~(x)/dx = —xKp(x) enables us to write
Eq. (4) as

U;(p, z) =
3 g 2x s Kp cos

a s=l a a
(7)

The property of Kp makes Eq. (7) converge exponential-
ly. Because of the hard-core interaction, the minimum
value for p is J3a at z = (2j+ 1)a. Then sap/a) x&3S ~ 5.4413. The asymptotic behavior of Kp(x)

(x/2x) ' e ' (for x»1) gives the leading term of
Eq. (7), U, (p, z) = (v/a ')rr'(2a/p) '~'e "'cos(nz/a).
The next correction is small. For example, at p=&3a
and z =a, the correction is only about 1%.

From F~ = —BU;/Bp, we note that the interaction U; is
attractive when (2j+ —,

' )a (z ( (2j+ —,
' )a; otherwise, it

is repulsive. F, = —BU;/Bz always pulls the dipole to a
position of z =(2j+1)a. Therefore, the interaction pulls
the dipole to p =J3a and z = (2j+ 1)a, where U; is mini-
mized to —0.044425 65v/a .

When there is second infinite chain around, the dipolar

(b)

I 1 f T I 1

FIG. I. (a) Three-dimensional body-centered tetragonal
(bct) structure (the particles have radius a and are not shown
to scale). (b) The bct structure is represented by a two-
dimensional crystal in which 0 represent the 2 chains and &

represent 8 chains. The unit is a.
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cles, A and B, via the above interactions. The distance
between two chains of diAerent class is p ~ J3a, but the
distance between two chains of the same class is p ~ 2a.

To minimize the potential energy, the ground state
must have a structure such that an A (or B) chain has as
many B (or A) chains around at the minimum distance
J3a as possible and is as far away from other A (or B)
chains as possible. Our bct lattice with a~ =J6ax,
a2= J6ay, and as=2az [Fig. 1(a)] is such a structure.
It can be described by a two-dimensional crystal, as in

Fig. 1(b). In this bct structure, an A (or B) chain has
four B (or A) chains as its nearest neighbors at p =J3a,
and four next-nearest-neighbor 2 (or B) chains at
p= J6a. The dipolar interaction energy per particle is

(a)

u = —0.381 268 v/a .

We have compared our bct structure with other struc-
tures. The close packing has two structures [Fig. 2(a)].
The ABCABC. . . series is a fcc lattice which is
equivalent to the two-dimensional crystal in Fig. 2(b). It
has Bravais lattice vectors a~ =2ax and aq =242ay and a
basis with one 2 chain at a corner and one B chain at the
center. Though an A (or B) chain also has four B chains
at p= J3a, it has two next-nearest 2 (or B) chains at
p =2a. As a result, u is higher, —0.3702402v/a for fcc.

The ABAB. . . series is a hexagonal close-packed (hcp)
structure which is described by the two-dimensional crys-
tal in Fig. 2(c), with Bravais vectors a~ =2&3ax and
aq=442/3ay. The basis has two A chains at (0,0) and
(4a/J3, 2a42/3) and two B chains at (J3a, 0) and

(a/J3, 2a42/3). Similar to fcc, around an 4 (or B)
chain, hcp has two next-nearest A (or B) chains at p =2a.
Thus, u is higher, —0.3700289v/a .

We have also compared the bct structure with some
other structures which are not formed by chains of 2 and
B. For example, a three-dimensional cubic lattice with
lattice spacing 2a can be regarded as a structure formed
by chains of 2 only. Using Lorentz's method, we have
the dipolar interaction energy per particle

~ ( 4rrpn/3'�—) p = —(x/12) v/a = —0.261 799v/a

(b)

X X X

X X X

o
I 1 I 1 I 1

where n =1/(2a) is the particle density. All the above
results are summarized in Table I which shows that the
bct structure has the lowest energy.

Now consider E~„.E[„=E+h,E, where E is the exter-
nal field and h,E is the field produced by the dipoles. hE
is proportional to p [8,9]. We introduce P such that
AE=Pp/a ef. The dipolar interaction energy per parti-
cle is u = ——,

'
p d, E. Then we have P= —2ua Ef/(p)

and p=aefa (E+Pp/a ef). Hence

(c) p=aefa E/(1 —aP) . (8)
X o X 0

X 0 X 0

The total Coulomb interaction energy per particle, in-
cluding dipolar interaction and interaction between di-
poles and the external field E, is given by [8,9]

aefa (E)
2(1 —aP)

(9)

1 I I

FIG. 2. (a) A close-packed layer of spheres with centers
marked A. The second layer of spheres can be placed on top of
this, above and parallel to the plane with centers at points B.
When the third layer goes in over points C, the sequence is
ABCABC. . . , and the structure is face-centered cubic (fee).
When the third layer goes in over A, the sequence is ABAB. . . ,
the structure is hexagonal close-packed (hcp). (b) The fee
structure is represented by a two-dimensional crystal in which O

represent the A chains and x represent 8 chains. The unit is a.
(c) The hcp structure is represented by a two-dimensional crys-
tal in which 0 represent the A chains and x represent B chains.
The unit is a.

TABLE I. Dipolar interaction energy per particle for various
structures.

Structure

bct lattice
fcc lattice
hcp structure
Separated chains
Cubic lattice

u (units of p'/a'ef)
—0.381 268
—0.370 240 2
—0.370028 9
—0.300 514
—0.261 799

The lowest dipolar energy of u corresponds to the largest
positive P which also gives the lowest u, .
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AU= —
3 g +2trs Ko

Sv
L nl, n2 s= I

2xspn
1 n2 2z'sz

cos
L

(10)

where p„,„,=[(x—n~ J6a) +(y —nqJ6a) ]'t . If the
cross section of the column has a radius R »a, we can re-
place g„,„,by an integration (1/6a )fo 2ttpdp. Then

r

2vz + 4vz ~ 2zsR 2zsR 2zsz
1 cos

3La 3La s=i L

where we use fo dp pKo(bp) =1/b —K~ (bR)R/b and

P, =icos(2trsz/L) = —
—,'. For chain B, z=(2j —1)a

(j=1, . . . , l), Pj~= cos[trs(2j —1)/l] =0. For chain 4,
z =2ja (j =1, . . . , l —1), +~=I cos(2trjs/l) = —1. The
average correction to the dipolar interaction per particle
is then

1 vn—h, U=
3La

2vtt g 2trsR 2trsR
l

3(2l —1)La s=i L L

(12)

The leading correction term (tta/3L)v/a decreases as

The Lorentz method writes AE =4trpn/3' +t5E;,
where n is the particle density, and hE; is the contribu-
tion from dipoles near the position under investigation.
For a cubic lattice, d, E; =0 and n = 1/(2a); hence

P =tr/6. In our bct structure, n =1/(6a ), and hE; is not
vanishing: AE; =0.0643643p/a ef and P =0.762496.

Finally, consider the difference between infinite physi-
cal chains and chains with infinite images. We assume
that L =2la, l an integer. The presence of two electrodes
has no efrect on chains 8, but prevents chains A from
having dipoles at z =0 and z =L. Then a chain A and its
images are equivalent to infinite chains with missing di-
poles at z =Lj (j=0, + 1, + 2, . . .). In the bct structure,
we can treat them as defects of dipoles at —

p at
n~a~+n2a2+n3(2la)z (n~, nq, and nq are integers).
Similar to the derivation of Eq. (7), we replace a by L/2
in Eq. (7) and obtain the interaction of these defects with
a dipole p at (x,y, z),

a/L. Compare the bct structure with a structure of
separated B chains at a finite L. When ub, t+AU/2
& u, h„.;„„the bct structure prevails. An estimation

L/a ) tr/3(0. 38[262-0.300514) =12.968 is required if
only the leading term is used. Therefore, when L»13a,
the induced ER solid has the bct structure, in spite of the
defects. As L ~ 12a, the structure of separated chains
prevails. We have confirmed this result in our Monte
Carlo simulation for L =10a. Since in most experiments
a is of the order of a micrometer while L has a size of cm,
and so L »13a, the ER solid has the bct structure.
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