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Vibrated Powders: A Microscopic Approach
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We present a microscopic model of a granular pile submitted to vibration, emphasizing the competing
roles of collective and single-particle excitations which lead to specific characteristics of the resulting
state. The effect of vibration on a powder is next investigated by a novel computer-simulation approach
in three dimensions, which enables us to probe cooperative eAects in the bulk; satisfying agreement with
the predictions of the model is obtained.
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Although the physics of powders is now a burgeoning
area of theoretical physics [1-7], there are correspond-
ingly few reliable modern experiments [8-10] which seek
to probe the most fundamental questions pertaining to
these very complex systems. We have in earlier work [5],
based on one of these experiments [9], investigated the
phenomenon of granular relaxation in relation to the de-
cay of the slope of a sandpile subjected to vibration.

It is well known that shaking and tapping a container
of powder can either compress or dilate the powder, but
theoretical evidence of this has so far not been forthcom-
ing. We present for the first time a three-dimensional
computer-simulation approach to relaxation in a vibrated
powder where we focus, by analyzing cooperative dynam-
ics in the powder, on the sects of vibration on the com-
pactivity [2] (proportional to the inverse of the packing
fraction) and structure of a three-dimensional pile. We
will demonstrate that, within a single mode of vibration,
both compression and dilation can result from different
amplitude regimes, and we will probe this quantitatively
by looking at the resulting volume packing fractions as
well as configurational correlation functions. First, we
outline the microscopic model [3] on which this work was
based (a quantitative version of which is presented else-
where [11])and follow this by a description of the simu-
lation techniques used to investigate it. Finally, we pre-
sent and analyze our results.

In the model, a granular pile is represented by an as-
sembly of potential wells [3], each representing a local
cluster of grains, while the effect of vibration applied to
the pile is modeled as being an effective noise H. If H is
greater than the binding energy of the particles to their
wells, then the grains are ejected, and move into neigh-
boring wells: In terms of the real powder, this means that
grains are ejected individually (single particle r-elaxa
tion) from their clusters. Conversely, if H is small rela-
tive to the binding energies of the particles, they are not
ejected: This energy goes into the reorganization of the
grains (collective relaxation) within their wells to mini-
mize voids. The claim is [3] that for high intensities of
vibration, the dominant process is single-particle relaxa-
tion, whereas collective relaxation dominates at low inten-

sities. It will be realized [3] that while single-particle re-
laxation leads to a rapid decay of the slope, it will lead to
a high compactivity and a rough surface. Equally, when
collective relaxation dominates, the slope will relax slowly
or not at all: On the other hand, slow collective reorgani-
zation of particles will lead to efticient void filling, i.e., to
low compactivities and a smooth surface.

The motivation behind the simulation that follows is to
probe, in three dimensions, the effects of the individual
and collective particle dynamics on the bulk properties of
the powder, the eII'ect on the slope having been examined
elsewhere [5]. We do this by examining the packing frac-
tion and the correlation functions of the positions and dis-
placements (which measure the range of cooperative ef-
fects) of the particles in the granular assembly, across a
range of vibration amplitudes.

The simulation cell is an open-topped box with a
square base of side L at height z =0, with periodic bound-
ary conditions imposed at the vertical walls. Initially N
monodisperse hard spheres are placed in the cell using a
sequential random close-packing algorithm [12]. Incom-
ing spheres start from large z with random lateral posi-
tions and follow compound trajectories, which are com-
posed of vertical line segments and circular arcs corre-
sponding to free-fall and nonslip rolling in contact with
stationary spheres [12], until they reach stable positions
where they are supported by the base or by three other
stable spheres.

Stable configurations of monodisperse close-packed
hard spheres formed by sequential deposition are charac-
terized by a volume fraction p =0.581 ~ 0.001 [13] and a
mean coordination c =6.00+ 0.02. They form the start-
ing point for our shaking simulations in which the whole
assembly is repeatedly and cooperatively repacked. Each
repacking consists of a sequence of operations which we
call a "shake cycle, " which models the effects of a vibra-
tion cycle in the real powder.

The first phase of the cycle is a uniform vertical expan-
sion of the sphere packing accompanied by random shifts
of the spheres in a horizontal plane [5]. Sphere i, at
height z;, is raised to the new height z =(1+e)z;, where
~ is a measure of the amplitude of shaking. For each
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sphere noisy lateral displacements given by the transfor-
mation x'=x+(„,y' y+(~, are accepted if they do not
lead to overlapping sphere configurations. Here g and

g~ are Gaussian random variables with zero mean and
variance s . The purpose of the expansion is to introduce
a "free volume" of size s between the spheres, so as to al-
low room for movement.

In the second phase of the cycle the whole system is
reassembled by a series of displacements of the individual
spheres. The displacements are chosen by a Monte Carlo
procedure [14] with the proviso that overlaps are avoided:
They occur preferentially in the downward direction.
This represents a simple approximation to the many-
particle dynamics of a falling assembly of spheres. This
Monte Carlo process is terminated when the efficiency of
making the moves falls below a threshold value, which is
chosen to be 1%.

Finally, the sphere packing is "stabilized '
by lowering

all the spheres along compound paths as described above.
The spheres are moved in turn, commencing with the
lowest; however, the falling sphere may contact, and rest
on, spheres which are still to be stabilized. This pro-
cedure allows the formation of complex structures, like
bridges [3,5, 15] and arches [8]; equivalent configurations
cannot therefore be constructed by a purely sequential
process. The stabilization phase does not significantly
alter the final measured volume fraction of the packing,
but is, however, responsible for forming all the particle
contacts, and the formation of the contact networks [5] to
be discussed later. It is crucial to emphasize that phases
two and three of our simulation together constitute the
novel feature of our algorithm, as they enable us to
probe the cooperative dynamics of a vibrated powder

We have performed simulations for L =8 sphere diam-
eters, with N=1000, and 0.05 & e& 1.5. Checks have
not revealed strong finite-size dependence for the results
presented below. To reiterate our procedure: We start
from the close-packed assembly with /=0. 581+ 0.001,
and subject the system to vibration. There is a transient
regime, which we discuss below, and we take our data
from well into the steady regime. Our chief conclusions
(cf. Fig. 1) are that we observe a fall in the packing frac-
tion for large e, and, more interestingly, a rise in p for
small e.

Thus, after each completed cycle the volume fraction
and mean coordination number of the spheres are mea-
sured in the bulk of the packing to avoid end effects. In
the transient regime, p and c drift systematically. The
length of the transient regime varies with the shaking am-
plitude from about two or three cycles when e& 0.25 to
about fifty cycles when a=0.05. These variations are a
signal of the diff'erent microscopic processes which take
place continually at large and small shaking amplitudes.

The results presented below are mean values taken
from about fifty consecutive cycles in the steady regime.
Figure 1 shows the variation of the volume fraction with
the shake amplitude. For e& 1.0, the volume fraction is
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FIG. 1. Plot of volume fraction p against amplitude of vibra-
tion e.

only weakly dependent on e with p —0.55. However, p
rises sharply as e is reduced below a=1.0. For a&0.2
the shaken assembly adopts configurations which are
more compact than those for sequentially deposited
spheres. Our results in Fig. 1 show that the curve goes
through a volume fraction of 0.581 (the appropriate value
for static configurations generated by sequential packing
under gravity) at e=0.2. This is the point where it would
be sensible to locate a transition in dynamic behavior.
This transition is related in a complex way to the nature
of bridge formation, and, as such, is a clear manifestation
of the change in the collective behavior of the structures
formed during the shaking process.

We observe that the mean coordination number of the
spheres in a shaken assembly (approximately 4.5) is sub-
stantially below that associated with a sequential deposit
(approximately 6.0) refiecting the presence of bridges,
arches, and other void-generating structures associated
with shaking in the real assembly. This eAect is, as ex-
pected, weaker for smaller amplitudes of shaking.

The pair distribution function h (r) of the sphere sepa-
rations r in the horizontal direction is illustrated by Fig.
2(a) for large and small shaking amplitudes. We observe
that short-range order is stronger at the lower shaking
amplitude where h(r) has a prominent second peak; this
indicates a significant second-neighbor shell.

We proceed now to establish the competing roles of
single-particle and collective dynamics in terms of the
correlations between the sphere displacements as a func-
tion of different amplitudes of vibration. In Fig. 2(b) we

plot the correlation function H(r) for the vertical dis-
placements Az; (measured in the horizontal direction) of
the spheres during one shake cycle:

H(r) =&&z;Az, 6(t;, r)e(lz;, l

—
2 )&i'&—l~z;l&',

where z;1 =z; —zj, t;z =[(x;—x~) +(y; —yj) I 't,
e(x) is the complement of the Heaviside step function.
We see that H(r) decays rapidly to zero with increasing
r: This represents the decay of longitudinal-displacement
correlations measured in the transverse direction. The
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data in Fig. 2(b) give an estimate for the horizontal
range over which the spheres move collectively (a mea-
sure of the typical "cluster size" in the transverse direc-

0.3 — +

xxx0.2—
v x

X
0.1 — v

v Xv Xv v X v
0..0 WV I /VXV V~&

2 3
r

FIG. 2. Plot of correlation functions (a) h(r) against r and
(b) H(r) against r h(r) is. the pair-correlation function of par-
ticle positions, while H(r) is the pair-correlation function of
particle displacements in the transverse direction. The crosses
correspond to a=0.05, while the triangles correspond to a=1.0.
The peak heights in (a) (not shown for convenience of plotting)
are h (1)—6.35 and 6.15 for a=0.05 and 1.0, respectively.

tion) during a shake cycle. This range is approximately
halved when the vibration amplitude is increased from
e=D.05 to 1.D. Our data suggest that the correlations of
the longitudinal displacements t1 5] (not shown here)
measured in the longitudinal direction are stronger than
those measured in the transverse direction: This is be-
cause, as should be the case for any deposition under
gravity, the motion of an individual particle is much more
sensitive to the positions and motion of neighbors above
or below it than it is to those alongside it. The correla-
tion functions of the transverse components of the sphere
displacements (not plotted here) are negative [15] at
small separations. This is consistent with spheres sliding
past each other as they are displaced in the x,y direc-
tions. Our results are consistent with the idea that collec-
tive reorganization of the spheres dominates during
small-amplitude shaking and that the extent of these
cooperative eAects is many sphere volumes.

Two qualitatively diff'erent relaxation behaviors are il-

lustrated in Fig. 3, which is a snapshot taken from a
simulation with I =3. The small cluster of spheres in

Fig. 3(a) is represented by its contact network in Fig.
3(b), where the contact network is formed from bonds
placed between the centers of all pairs of touching
spheres. The networks which result after the cluster of
Fig. 3(a) undergoes a single shaking cycle with a=0.05
and 1.0 are plotted in Figs. 3(c) and 3(d). We can see
the result of a small shake by comparing Figs. 3(b) and
3 (c)—the contact network deforms (as shown by
differences in many bond orientations), while there are
few topological changes. By contrast, after a large shake,

(a}

(c

FIG. 3. (a) A random close packing of 24 spheres supported by a hard base. (b) The contact network corresponding to the pack-
ing in (a). (c) The contact network for the packing which results when a shake of amplitude s=0.05 is applied to the cluster of (a).
(d) The contact network for the packing which results when a shake of amplitude s= 1.0 is applied to the cluster of (a).
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as seen from a comparison of Figs. 3(b) and 3(d), the
network connectivity is substantially altered, i.e., there
are several examples of bond creation and annihilation.
This is confirmed by detailed analyses of the contact-
network autocorrelation functions to be presented else-
where [15]. These functions are qualitatively similar to
those previously presented for two dimensions [5].

We have thus been able to establish, as predicted by
the microscopic model [3], that above a threshold of vi-
bration, the compactivity (which we measure operational-

ly by the inverse of the packing fraction) rises in response
to an applied vibration, whereas below this, it falls. In
addition, and more crucially, by monitoring the dynamic

correlation functions mentioned above, we have been able
to consolidate the link between a rise in packing fraction
and a predominance of collective motions, and vice versa.

This confirms our earlier conjecture [3] that the mecha-
nism of collective relaxation is an eScient way of mini-
mizing voids, which is also a result that has been obtained

theoretically [11]. In future work [15], we aim to show
that the competition between single-particle and collec-

tive relaxation mechanisms contributes significantly to
the surface properties of a sandpile.

In conclusion, we have devised a novel simulation
method which enables us, with its ability to probe co-
operative dynamics, to focus on diA'erent microscopic re-

laxation mechanisms at the particulate level. We have
verified earlier theoretical predictions [3], and have ob-

tained a consistent picture of the relaxational dynamics in

this rich and fascinating system.
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