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Ward Identities and the P Function in the Luttinger Liquid
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One-dimensional metals have a particular symmetry associated with the discrete structure of the Fer-
mi surface: separate charge conservation in low-energy-scattering processes for particles near the left
and right Fermi points, respectively. The field-theoretic renormalization group allows for an eScient ex-
ploitation of the Ward identities following from this symmetry. As a first application we prove that the P
function of the Luttinger model vanishes identically. The same symmetry ensures the finiteness of the
compressibility, thus making possible the existence of stable metallic phases with anomalous dimensions
in d = l.
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The unusual properties of high-T, cuprates in the non-
superconducting phase have led to the recent proposal of
a possible breakdown of Fermi-liquid theory in two di-
mensions [1,2], thus stimulating a reinvestigation of the
mechanisms governing the non-Fermi-liquid phases
known in d= l.

The breakdown of Fermi-liquid theory in one-di-
mensional interacting Fermi systems shows up already at
second-order perturbation theory: The corrections to the
vertex functions diverge logarithmically near the Fermi
surface of the noninteracting system. A particular renor-
malization-group approach, known as "g-ology, " was
developed in the 1970s [3], where the important interac-
tions are parametrized by a small set of coupling con-
stants g;. The divergences are then handled by scaling to-
wards exactly soluble models such as the Luttinger model
[4]. A scaling ansatz has been assumed for the vertex
functions, allowing one to approach the Fermi surface by
rescaling the fields and coupling constants. The validity
of the ansatz has been verified to that order in the cou-
plings to which explicit calculations have been carried out
[3].

For spinless fermions in a one-dimensional continuum
it has been rigorously shown that the P function is analyt-
ic in the coupling constant [5]. Even more, the P function
is known to be zero to three-loop order in this case [3].
Clearly, the identical vanishing of the P function to all
orders can be easily deduced by resorting to the exact
solution [6] for the propagator of the Luttinger model,
which describes the low-energy physics of generic spinless
one-dimensional continuum fermions: The exact ex-
ponent g describing the low energy-momentum asymptot-
ics of the propagator is a continuous function of the cou-
pling constant, which is possible only if the P function
vanishes identically, thus giving rise to a line of fixed
points.

The purpose of this Letter is threefold. First, we
rewrite the old scaling approach [3] to one-dimensional
Fermi systems in the language of the field-theoretic re-
normalization group familiar from critical phenomena
[7,8]. Renormalizability is easily shown in the latter for-
mulation, and implies that the scaling ansatz used in g-
ology indeed holds to all orders in the couplings. Second,

we show how Ward identities can be used to obtain all-
order constraints on the structure of the renormalization
group. In particular, we prove that the P function for
spinless fermions vanishes identically. This proof, which
makes no use of the exact solution of the Luttinger mod-
el, has the merit of identifying the two salient ingredients
leading to a line of fixed points with non-Fermi-liquid be-
havior, namely, (i) divergent terms in perturbation theory
and (ii) a symmetry of the interaction term (charge con-
servation, separately in each channel) yielding the cancel-
lation of divergences in the renormalized coupling can-
stant. Finally, we point out that the separate charge con-
servation plays another important role: It ensures the
finiteness of the compressibility, thus making possible
the existence of stable one-dimensional metallic phases—despite the presence of a propagator with anomalous
dimensions.

The low-energy physics of spinless fermions in one di-
mension (extensions will follow in a longer publication) is
described by the Luttinger model [4]

H =HO=H

H. = g g..(k)at(k)a. (k),
a=+ k

g a+t(k+q)a+(k)at (k' —q)a (k').
V 1,|',q

(la)

(lb)

(1c)

Here at~ (k) [a+ (k)] are creation (annihilation) opera-
tors for fermions near + k~ ("channel" a = ~ ), where k
is measured relative to + kF, e+ (k) =+ vFk is a linear-
ized dispersion (vF Fermi velocity), g is a coupling con-
stant, and V is the volume of the system. We keep the
vector notation (boldface) for momenta even in one di-
mension to distinguish them from the bivectors k =(k, co)
which include the energy variable. Nonlinear corrections
to e+-(k) and k-dependent interactions scale to zero at
low energies, i.e., they are irrelevant in the renormal-
ization-group sense [3]. Because of the Pauli principle
there is no interaction term involving fermions near +kF
(or —kF) only.

The model described by Hamiltonian (1) is well

defined only if an ultraviolet cutoA is introduced. We im-

pose a bandwidth cutoff' A by requiring ~k~ (A. Note
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that the scale kF does not appear in the Luttinger model.
Only the existence of two Fermi points is important, not
their distance in momentum space. Hence, A '

&s the
only length scale in the system. The disappearance of the
length scale kF ' is here obtained free; in d ) I, where
the Fermi surface is a continuum, its elimination is more
involved [5].

Our investigation involves the following Green func-
tions, defined as ground-state expectation values of time-
ordered operator products:

G.(x,x') =G."'(x,x') = i &V e—.(x)et(x')), (2a)

G""(x x'.y) = —(7+ (x )et(x')p (y)) (2c)

and analogously for G ' and G . Here +J(x )
[+,(x)] are Heisenberg operators at the space-time point
x =(r, t), where the corresponding Schrodinger operators
+t(r) [%',(r)] are the Fourier transforms of at(k)
[a,(k) ]; p, (x ) = +t(x) W, (x ) is the charge-density
operator. The vertex functions I "' corresponding to
G "' are constructed by considering only connected,
one-particle-irreducible Feynman diagrams with ampu-
tated external legs. The respective Fourier components
are denoted by I ( ), I (pl, p2,p|,p2), I ')(p, p';q),
etc. For g=0, I is given by 104(p) =p'~, where
p'+- =to% vFp.

Perturbative results for the vertex functions diverge at
low energy-momenta, i.e., a renormalization-group treat-
ment is necessary [3].

Since A is the only length scale in the system, di-
mensionless quantities depend only via p/A on p and A.
Hence, the low energy-momentum limit p 0 is directly
related to the ultraviolet limit A ~. The ultraviolet
(UV) point of view is more convenient since the UV de-
gree of divergence of diagrams can be determined by sim-

ple power counting.
The canonical dimensions associated with the Hamil-

tonian (1) and the fields are [H] =A' and [a,(k)]
=A 't, respectively, and therefore [g] =A, i.e., the
coupling g is dimensionless and the bare propagator
Go, (p) has dimension A '. We define y =I /p'and

y =I /g, which are both dimensionless and normal-
ized to 1 in the noninteracting limit. Power counting re-
dicts that primitive divergences are possible in I, I
I ', and I, but not in higher-order vertex functions.
An explicit calculation shows, however, that I ' is ac-
tually primitively convergent (there is only one skeleton
diagram, the particle-hole bubble, which is finite for
A ~). Hence, at most three renormalization factors
are necessary to remove the UV divergences from the
theory. We define renormalized vertex functions [7]

y" (p/X, g) = lim Z "(k/A, g) y" (p/A, g), (3)

G.(tt) (x (,x2.,x ),x2) =(7 e'. (x) )et)(x2) e t(x ()@II(x2)),

(2b)

where (i) =(2), (4), respectively, and g, the renormalized
coupling constant, is given by

—[(Z (2)) 2/Z (4)] (4)

y" (p/X', g') =z "(X'/X, g) y" (p/X, g), (5)

where z ' =lim~ [Z ' (X'/A, g)/Z ' (X/A, g)] which
can be expressed as a function of X'/A, and g. The renor-
malized coupling transforms as

II [( (2) ) 2/ (—4)]— (6)

Equations (5) and (6) correspond to the old scaling an
satz [3], which therefore holds to all orders in the cou-
pling constant. The infinitesimal variation of the renor-
rnalized coupling defines the P function,

ti

8(k'/k)
( (2)) 2

(4)z
(7)

The scaling dimension x~ of the field +,(x) is given by
the bare dimension x+ =-

—,
'

plus the anomalous part ti/2,
which is obtained by differentiating (5) for y, as [7]

a[(z"') -'"]
8(k'/k)

A. ,g g

(8)

where g* is the fixed-point solution of P(g*) =0 attract-
ing the starting coupling g upon scaling towards the Fer-
mi surface. The scaling dimension determines the large
distance (i.e., small energy-momentum) asymptotics of
the propagator G. A positive anomalous dimension im-

The renormalization factors Z ' are chosen such that
Z(')y(') is finite at any finite order in g (as A ~); p in

(3) represents all external bimomenta of the vertex func-
tions and A, parametrizes the renormalization-group
transformation [7] (see below). The property that all UV
divergences can indeed be absorbed in a finite number of
p-independent renormalization factors is a nontrivial
feature of a model, its renormalizability. In general, a
model is renormalizable if the coupling constants have
non-negative canonical scaling dimensions [8], which is
the case for the problem at hand, since g is dimensionless.

The requirement of finiteness does not determine the
renormalization factors Z ' uniquely. To fix the choice
one can impose "normalization conditions" on the renor-
malized vertices y by requiring that y

' (NP, g) = I at a
special point in p space, the "normalization point" (NP).
DiAerent normalization points yield diAerent renormal-
ized theories which all correspond to the same bare the-
ory. The transformations from one renormalized theory
to another make up the field-theoretic renormalization
group [7,8]. To obtain scaling equations relating high
and low energy-momentum regimes it is sufficient to con-
sider a one-parameter family of normalization points,
which can be parametrized by a single parameter k.
Moving from A. to X', the renormalized vertex functions
transform as
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(21)(pp+qq)F(2)(p+q)F(2)(p)

A."".(p,p+q;q) =0.
(9a)

(9b)

These identities follow from the separate charge conser-
vation in each channel a in momentum space and can be
proved via the equation of motion for G ' [9]. Using
(9) one can show that D,p(q), the eA'ective interaction
between the channels a and P, can be calculated exactly
by performing the RPA sum with the bare polarization
bubble II ~ (q), since due to (9) all vertex and self-energy
corrections to II cancel each other [10]. In particular, D
remains finite as A ~, i.e., D need not be renormalized.
Denoting the renormalization factor of A ' by Z
the Ward identity (9a) implies

Z(~, ]) Z (~) (10)

up to a finite, scale-invariant constant. We note that (10)

plies non-Fermi-liquid behavior of the system, where both
the quasiparticle weight and the single-particle density of
states vanish at m" near the Fermi surface, while the
momentum distribution loses its jump in favor of a k"-
power-law behavior.

We will now use Ward identities to show that the P
function (7) of the Luttinger model vanishes identically
to all orders in the coupling constant.

The irreducible charge vertex A ', i.e., the sum of all
one-interaction-irreducible contributions to I ', obeys
the Ward identities [9,10]

FIG. 1. Dyson equation for G' );

G (Go); dashed lines, g, the shaded
shaded pentagon, 1

bold (thin) lines represent
semicircle, I ' '; and the

holds in any interacting Fermi system as a consequence of
the usual charge conservation, which leads to a Ward
identity relating the charge and current vertices to r(
However, the validity of the two separate identities (9)
and the ensuing finiteness of D are a consequence of the
separate charge conservation specific to the Luttinger
model.

To relate Z to Z ' and Z we consider the
skeleton structure of I in terms of dressed Green func-
tions 6, dressed interactions D, and dressed charge ver-
tices A '. We now show that I " has no primitive
divergences, i.e., all divergences contributing to I are
due to 6 and A ' insertions.

Naive power counting predicts logarithmic UV diver-
gences for the I skeletons. However, when all dia-
grams of a given order are summed, these divergences
cancel each other. To show this, we rewrite 6 by com-
bining the Dyson equation shown in Fig. I (derived from
the equation of motion for G ) with the following Ward
identity for I

(4 I) D-p. , (q)
'

G., (pl+q) )g, p(pl p2 pl p2 q) = ' ', , F.",.', (Pl+q, p2 pl p2)
Gal KP l j

G. , (p I
—q) r.(4,.),(pl, p2,pl —q,p2) +(1 2) .6, p]

This identity is also [as (9)] a consequence of separate
charge conservation in each channel and can be derived
from the equation of motion for G '). Inserting (11),
the last term in Fig. 1 can be expressed in terms of I
as shown in Fig. 2; a wiggly line represents D,))(q)/gp.
The first term on the right-hand side in Fig. 2 vanishes,
since J~D„(q)/q' =0. Figures I and 2 provide an exact
integral equation for the four-point vertex of the Lut-
tinger model. Performing power counting for the
skeleton diagrams contributing to the remaining three
terms in Fig. 2, one realizes that the degree of divergence
has been reduced by one, since the wiggly lines vanish as
A ' for large momenta (in contrast to D, which behaves
as A ). Hence I has no primitive divergences, i.e., it
can be renormalized by just renormalizing the A ' and
6 insertions entering its skeleton structure. This amounts
to multiplying each A ' by Z ' and each 6 by
(Z ) ' [since G=(I ) ']. Since an nth-order I
skeleton contains 2n A ' vertices and 2n —2 6 lines and
since Z ' =Z, this corresponds to an overall multi-

plication by (Z ) —independent of n Thus.
Z(4) (Z(2))2 (12)

FIG. 2. Decomposition of the last term in Fig. 1; the shaded
rectangles represent I ' ', the wiggly lines, D(q)/q'.

up to a finite, scale-independent factor. This yields, by
(4), g =g and therefore

P(g) =0.
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This means that g remains marginal, i.e., the Luttinger
model is governed by a line of fixed points. We note that
for a general choice of normalization conditions g be-
comes a finite, scale-independent function of g, but the
result P—:0 is independent of this choice.

There are instructive analogies relating the present
theory to quantum electrodynamics (QED). In QED the
coupling (the fine-structure constant a) is also dimen-
sionless and primitive divergences are present in the elec-
tron propagator G, the photon propagator D, and the
electron-photon vertex A ', while the four-electron ver-
tex is primitively convergent. Local charge conservation
leads to a Ward identity yielding a cancellation of the G
and A ' renormalizations in the renormalization of a.
As a consequence, the coupling constant in QED renor-
malizes as the photon propagator D. The crucial
diff'erence in the Luttinger model is that D is finite, i.e.,
the coupling does not renormalize at all. A similar com-
plete cancellation of coupling-constant renormalizations
due to Ward identities is known to occur in the Thirring
model [11].

Of course, Ward identities can also be exploited for
more general models of interacting fermions, where exact
solutions are not available. In particular, in a one-
dimensional model with spin and backscattering but
without umklapp scattering, separate charge conservation
still holds in each channel and yields Ward identities for
the vertex functions, thus again reducing the number of
independent renormalization factors. This will be the
subject of a longer paper.

Many physical quantities in the Luttinger model show
a peculiar critical behavior [3]. The quasiparticle weight
and the single-particle density of states both vanish as a
power law near the Fermi surface, the density-density
response function near q =2kF diverges (vanishes) for
positive (negative) g, and the Cooper pair correlation
diverges (vanishes) for negative (positive) g. Neverthe-
less, the compressibility, i.e., the static, homogeneous
limit of the density-density response remains finite, as ex-
pected on physical grounds. This is not trivial, since there
are singular terms in the perturbative structure of the
density-density response. Total charge conservation leads
to a Ward identity which guarantees the cancellation of
singular contributions order by order in perturbation
theory. The Ward identities following from the separate
charge conservation of left and right particles ensures
also the absence of singular behavior of nonperturbative
origin. In fact, the exact density-density response of the
Luttinger model is given by an RPA resummation of bub-
bles with bare Green functions [3], i.e., the anomalous di-
mension of the full propagator is compensated exactly by
the vertex corrections. This latter result can be extended

to fermions with spin, as long as umklapp processes which
violate the separate charge conservation are absent.

Recently, a renormalization group for d-dimensional
fermions has been constructed by following Wilson's pro-
cedure, i.e., integrating out high momenta [5,12]. How-
ever, the only singularity found so far in d & 1 is the
well-known Cooper instability, which appears at one-loop
order in I . Singularities or anomalous behavior of the
propagator G leading to a breakdown of Fermi-liquid
theory have not yet been explicitly identified. If there
are, there must be some mechanism which cancels their
eAect on the density-density response function to prevent
an anomalous behavior of the compressibility. The sym-
metry leading to such a cancellation in the Luttinger
model is specific to the discrete structure of the Fermi
surface in one dimension and can hardly be generalized to
higher dimensions, thus making the possibility of anoma-
lous behavior of the propagator rather remote.
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