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Complete Solution of the One-Dimensional Hubbard Model
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We show how to construct a complete set of eigenstates of the Hamiltonian of the one-dimensional
Hubbard model on a finite lattice of even length L. This is done by using the nested Bethe ansatz and
the SO(4) symmetry of the model.
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The one-dimensional Hubbard model has been known
to be exactly solvable since the work of Lieb and Wu of
1968 [1]. In their paper, a large set of eigenfunctions of
the Hamiltonian were found by using the nested Bethe
ansatz (BA) [2,3]. These eigenfunctions are normaliz-
able and mutually orthogonal (this became especially
clear from the results in [4]). However, the issue of
whether this set of eigenfunctions is actually complete
has not been considered until recently.

By a complete set of eigenstates we mean a set that
forms a basis in the Hilbert space of the model. A com-
plete set of eigenstates for the Hubbard model on a lat-
tice of L sites contains 4 independent states.

In a recent paper [5], we used the SO(4) symmetry of
the Hubbard model (which had been explored in [6,7]) to
show that the BA is not complete. This was done by
showing that by acting on the BA states with the SO(4)
generators, one can find eigenstates that are outside the
BA.

In this Letter we show how to construct a complete set
of eigenstates of the one-dimensional Hubbard model.
This will be done as follows. We will first construct all
BA states of a special type, which we call regular BA
states. We will then generate additional states by acting
with the SO(4) generators on the regular Bethe ansatz
states. We will show that the number of eigenstates ob-
tained in this way is 4, which is precisely the dimension
of the Hilbert space. Since all the eigenstates considered
are orthogonal, this will show that we constructed a basis.

The Hamiltonian of the Hubbard model on a one-
dimensional finite lattice of even length L is given by
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Here the c; are canonical Fermi operators on the lattice,
with anticommutation relations given by tc;,cI,]
=6; ~6', . They act in a Fock space with the pseudovac-
uum ~0) defined by c; ~0) =0. The operator n; =c;t~;
is the number operator for electrons with spin a on site i.

The model is invariant under spin rotations, with the
corresponding SU(2) generators given by
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(Note that g- equals minus the third component of the
total spin. ) It has been found [6] that for even L the
model has a second SU(2) invariance, generated by
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The raising operator ti of this second SU(2) creates a
pair of two opposite-spin electrons on the same site, with
momentum tt. Combining the two SU(2)'s, which com-
mute with the Hamiltonian and with one another, leads
to an SO(4) invariance of the one-dimensional Hubbard
model [7].

The Hamiltonian (1) was analyzed in [1] using the
"nested" BA [2]. This analysis resulted in a large num-
ber of eigenstates of the Hamiltonian, which are charac-
terized by momenta k; and rapidities A, where i =1,
2, . . . , M+N and a =1,2, . . . , M for an eigenstate with
a total number of N spin-up and M spin-down electrons.
Imposing periodic boundary conditions on the BA wave
functions leads to the following equations:

sin(k~ ) —A, —UI4i
=i sin(k~. ) —A, +Ui'4t

(4)
sin(kI) —A, —Ul4i M

Ap
—A, —Ut'2t

The total number of solutions to (4) is less than 4, so that the BA alone does not lead to a complete set of eigenstates.
To establish a relation between the SO(4) symmetry and the BA, it is useful to define "regular" BA states (for finite

L), to be denoted by ~ tir~ iv), by the properties that N —M ~ 0, M+N ~ L (less than half or half filling), and that all k;
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and A, are finite. In [5], we established the following re-
markable property of the regular BA eigenstates of the
Hamiltonian: They are all lowest ~eight states of the
SO(4) algebra (2),(3), i.e. ,

g~ pu, jv& O (I YM, && (5)

=(L —M N+1)(N——M+1) . (7)

The states in this multiplet, which are of the form
(rl )'(p ) P~ yM z&, are all mutually orthogonal.

We now observe that (i) states obtained by acting with

the SO(4) are not lowest weight states, and are thus, as a
consequence of (5), outside the regular BA, and (ii) all
the states that are not highest or lowest weight states for
both SU(2) algebras are outside the BA. The statement
(ii) shows that the BA is not complete. An example
[5] of a state that is outside the BA is gt~O&

Since the SO(4) commutes with the Hamiltonian, this
means that we can generate an SO(4)-multiplet of eigen-
states by acting with the raising operators q and j on

I YM, w&. Since

rL I yM, w&
= r (M+N —L) IyM, ~&,

lyMw-& —
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a state ~y~ z& has spin g= & (L —M —N) with respect
to the rl-pairing SU(2) algebra and spin g= 2 (N M)
with respect to the g SU(2) algebra. The dimension of
the corresponding SO(4) multiplet is therefore given by

dimM ~ = (2g+ 1)(2(+ 1)

=g,'=)(-1)~c, )c, ~
~O&.

Counting regular BA states means counting in-
equivalent solutions of the equations (4). Following
Takahashi [8], we will first distinguish different types of
solutions [k;,A, j of (4). The idea is that for a solution
[k;,A,j, the set of all the k s and A, 's can be split into
(three) different kinds of subsets (strings), which are (i)
a single real momentum k;; (ii) m A 's that combine into
a string-type configuration ("A strings"), and this in-
cludes the case m =1, which is just a single real A, ; (iii)
2m k s and m A 's that combine into a diAerent string-
type configuration ("k-A strings"). The configurations
(ii) and (iii) are bound states.

Let us now consider a solution that splits into M
copies of a A string of size m, M„', copies of a k -A string
of size m (containing 2m k s and m A, 's), and M„addi-
tional single k s. Clearly, we have

M+N =M„+2 g mM„'„M = g m(M„, +M„', ) . (8)
nl=1 nl= I

How many solutions of this type exist?
The idea is that each of the basic strings in a solution

can be characterized by the position of its center on the
real momentum or rapidity axis. Because of the periodic
boundary conditions, this position has to be chosen from a
discrete set. We will denote the centers for the size-m A
strings by A"', a =1,2, . . . , M„„ those for the size-m k-A
strings by A'"', a=1,2, . . . , M„'„and we will denote the
unpaired momenta by kj, j=1,2, . . . , M, .

Following [8], we now write the following equations for
the centers kj, A,"', and A™.They follow from (4) and
the form of the "idealized" string solutions (we write
N„=M+N and M'=g„,=~mM„', ):
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where

0(x) =2 tan '(4x),

e„„,(x) ='
0 +20 + . . -+20

In —m
I In —m /+2

4x + g
4x

n+m —2 n+m for n~m,

(lo)
20(2x)+ +20 +0

n —
1 n

for n =m.

The lz. , J,", and J,'" are integer or half integer according to the following prescriptions: l~ is integer (half integer) if
(M, , +M„', ) is even (odd); the 1," are integer (half integer) if N, —M„ is odd (even); the I,'" are integer (half in-
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teger) if L —(N, —M„') is odd (even). According to [8],
we have the following inequalities:

IJ."I ~ —N, —2M' —Z t..M., —1,1

2 ni= l

L —N„+2M' —Z t„M„', i-
m=l

where t„„,=2 min (n, m ) —8„„,.
In order to enumerate the diferent solutions of the sys-

tem (9), it is sufficient (according to [8-10]) to enu-
merate all possible sets of nonrepeating (half) integers 1~,
J,", and J,'" satisfying (11). (In the context of the XXX

t

Heisenberg model, it has been known since Bethe [11]

that the actual distribution of the diferent types of solu-
tions can be diA'erent from the one implied by this count-
ing: For example, some of the predicted complex two-
string solutions do not occur, but their absence is com-
pensated for by the existence of additional pairs of real
solutions [with repeating (half) integers]. Still, the
counting of solutions according to [9,10] gives the correct
result for the total number of states. )

From (11) we read oA' that the number of allowed
values for the (half) integers corresponding to each
of the strings are (i) L for a free k;, (ii) N, —2M'
—g„,=tt„„,M„, for a A string of length n, and (iii)
L N„+—2M' —g„,=t t„„,M„', for a k-A string of length n

The total number of ways to choose the (half) integers in

a solution with multiplicities M„M „and Mm is there-
fore given by

N, —2+m=i mM' —g~=t t„M L N, +2+m=—tmM' pm=—t
t„M'

n(M„, {M„,],[M']) =
M Q M g . (12)

e, n=l M„ , n=l

The total number of solutions of (4) with given numbers N and M is now obtained by summing n(M„[M„,], IM„',])
over all the M„M„„and M„'„under the constraints (8).

Every solution to (4) gives us a regular BA state, which comes with an entire multiplet of eigenstates of the Hamil-
tonian, the dimension dim~ ~ of which is given in (7). The full number of eigenstates that are obtained from the BA
and the SO(4) symmetry is therefore given by

Neigenstates
= Z Z

M~O N~O
N —M~0
M+N~L

M, =O M =0 M' =Om

M+ JV=M, +2+, M'

N —M =M, —2+m-lmMm

n(M„[M ],[M']) dim~ iv. (i3)

We will now outline how to prove that for even L the sum in (13) equals 4 . We first recall two identities which have
been used to prove completeness for the XXX Heisenberg model [9,10]:

and

M 0 n=l
~m- 1

nl Mm Mx

Lx Zm tnm Mm LxLx

Mx Mx-1 (i4)

tLx/2) LX

M =p Mx,
x ~x(L~ —2M~+ I) =2 (is)

The first of these equations gives the number of regular BA states (defined by Mz ~ [Lz/2]) for the Heisenberg XXX
spin chain on a lattice of length L~ with M~ overturned spins. Formula (15) shows completeness: The total number of
states in the SU(2) extended BA is equal to 2, which is the dimension of the Hilbert space of the model.

The summations over the multiplicities M„, and over the diA'erence N —M in the Hubbard model are precisely of the
type (14) and (15), after the substitution Mz —, (M, —N+M) and Lz M, . (Under these summations the total
number of electrons M+N, denoted by N„ is fixed. ) The summation that remains after this spin summation is

L

Neigenstates X (L Ne + 1 )
Ne=p

N,

M, =O M' =pm

N, =M, +2+m imMm

L N, +g =t (2m —t„)M—'

For evaluating this sum we will use a "summation device which is similar to the one discussed by Takahashi in the Ap-
pendix of [9]. We will only sketch the idea here and present the details of this derivation elsewhere [12]. The main idea
for the summation procedure is that one identifies the result of the summation as the coe%cient of a certain power of a
variable x in the Laurent expansion of a suitable function. This function is then worked out as an infinite product of
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factors, which arise upon the successive summations over the numbers M', m =1,2, . . . , ~. After a rather long deriva-
tion this leads to

L

lV„;,„„„„„,= Il, ,
(I+2x)'g(a+I)x'[f(x)] ' ',

2 ttt E=O
(17)

where the contour of integration is a small circle around
the origin. The function f(x) is given by f(x)
=+t=~(1 —Ut ') and the functions Ut(x) are deter-
mined by the recursion relation Ut+~Ut —

~
=(1 —Ut) and

the initial values U~(x) =x and U2(x) =(1 —x ) /x .
The two initial conditions determine the solution of the
recursion relation uniquely, and we find that 2f(x) =1
+(I —4x )'t . After substituting this solution into (17)
we obtain

Neigenstates

Thus we find that the number of eigenstates of the Hub-
bard model constructed by the SO(4) extension of the
BA coincides with the dimension of the space of all elec-
tron configurations. This means that these states form a
complete set of eigenstates.

We can also obtain a closed expression for the number
of regular BA states for given numbers M and N of spin-
down and spin-up electrons:

L L L
N M M —2

L L L
N+1 N —

1 M —
1

+

This formula is the close analog of the result (14) for the
AXL Heisenberg model.
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