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“Confinement” in the One-Dimensional Hubbard Model: Irrelevance of Single-Particle Hopping
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We demonstrate, by direct use of the asymptotic Green’s functions of Korepin and Ren, that the one-
dimensional repulsive U Hubbard model has the property of “confinement,” in that weak interchain cou-
pling does not cause coherent particle motion in the transverse direction at absolute zero. Implications
for real one-dimensional systems and for the two-dimensional Hubbard model are discussed.

PACS numbers: 75.10.Jm

It is often assumed that an array of one-dimensional
chains, weakly coupled by one-electron tunneling between
chains, crosses over to two-dimensional behavior. We
study this question for the repulsive Hubbard model and
come to the conclusion that in this, and probably many
other cases when the chain is not a Fermi liquid, the op-
posite is true: A finite interchain hopping is required.
We call this behavior “confinement” because it has a
close analogy to the confinement of quarks to the interior
of the hadron. It is not quite equivalent to the usual Wil-
son definition of confinemerit.

The magnetic analogy of Heisenberg or Ising chains
with weak interchain J has been of course well known to
have the standard crossover behavior, in the Ising case
since the time of Onsager. The interchain hopping case is
suggested to be different by the existence of very large
resistivity anisotropy in some materials, an observation
which cannot be explained by anisotropic localization as
it sometimes was in the past, since that is contrary to the
theory of localization: An electron delocalized in one or
two directions is simply delocalized.

The problem has not been very seriously attacked. A
discussion by Wen [1] does not deal with the important
issue of spin-charge separation, and one by Schulz [2] re-
moves that separation by setting spin and charge veloci-
ties equal. Both Wen and Schulz also use a questionable
criterion for relevance within the Fermi-liquid theory [3].
But actually, the main difficulty with these treatments is
that the very concept of “relevance” may be itself ir-
relevant. At issue, as in the similar problem of localiza-
tion, is coherence: the coherence or not of the tunneling
process between the chains. In localization, there is no
energy effect of the mobility edge, and conventional
finite-temperature theory does not pick up the effect; here
there are both energy and transport effects but the key is
coherence.

Recent calculations [4-7] of the asymptotic one-
particle Green’s function at 7=0 for the Hubbard model
are sufficient to settle this question precisely. The inter-
chain “hopping” is a simple static one-particle perturba-
tion. The lowest-order response to it is given by a dia-
gram involving creating a particle in one chain and a hole
of equal momentum in a second, which do not interact
except to recombine via the perturbation itself, so the
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response function is simply the product of the interacting
electron and hole propagators, which to lowest order can
be calculated exactly. We calculate the energy response
but a simple identity would relate this to the conductivity.
It is instructive to do the noninteracting case first. The
problem is not as simple as might appear at first. The
relevant diagram (Fig. 1) leads to the response function

R=t1 % GiUK,0)GR"(k,~ o),
k.w,0
where 1 and 2 are separate Hubbard chains and we are
calculating the response function to a perturbation con-
necting chains in an array of N chains i:

i edPeitD +He.
i
Note that R is also

2lif_wdxj; dte "GV, 0GP M (x,1) .

In general we should use the retarded Green’s functions
(designated by R) since we contemplate turning on the
perturbation ¢, adiabatically at a rate ~n after any in-
teractions are introduced on the separate chains. We are
looking for an anomalous imaginary part to R represent-
ing real transitions, which signals a redistribution of elec-
trons in k space.

The use of causal Green’s functions will become the
essential physical point when we consider the interacting
chains, because we have to be very careful about the or-
der of turning on the interactions U and ¢,. We must
realize that U=0 is a singular point at which the nature
of the spectrum changes qualitatively, so that we cannot
expect that turning on ¢, and then U will have the same
result as the opposite order. Even though some results
may be obtained with renormalization methods from per-

FIG. 1. Lowest-order diagram for interchain tunneling.
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turbation theory in U for the original problem with ¢, =0
we should be reasonably sure that confusing the order by
using time-ordered Green’s functions and not retarded
ones will be incorrect. If we first go to finite, large U,
where the spectrum is qualitatively different from near-
zero U—having spin-charge separation, in particular
—and then turn on ¢, and/or T as small perturbations,
we find quite different results from those given by the
standard temperature Green’s functions.

Figure 2 illustrates the problem. On the vertical axis
we have the perturbation ¢, (actually the same diagram
holds true for a number of types of T-invariant perturba-
tions). On the horizontal axis is U. We intend to show
that a line A separates the region where ¢, is irrelevant
from that where it causes finite tunneling or other effects.
Clearly, to reach region B below line A4, we must first
turn on U and then ¢,; if we go in the opposite order,
which is implied by conventional procedures, we shall end
up in region C, and will miss the effect. Thus it is essen-
tial to maintain the time ordering of events. Clearly
t; =0, U=0 must be a singular point at which Fermi-
liquid theory starts to fail.

If we first turn on ¢, we know easily what will happen
physically. ¢, will split the unperturbed energy levels &
into a two-dimensional manifold; for a simple pair of
chains 1 and 2 we will get ¢, — ¢; X ,, the two energies
belonging to symmetric and antisymmetric linear com-
binations. Thus the Fermi surface will shift to kr— kfr
+t./hvr and, to lowest order in U, we will have no
singular scatterings from kr+1¢, to kp—t, and the sys-
tem will be effectively two roughly independent different
Hubbard-like models with smaller effective U. If we in-
troduce many chains there will be a two-dimensional Fer-
mi surface and a whole new two-dimensional problem to
solve. The energy response is of order ¢ because ~1,
levels have been shifted by ~— —¢, by reoccupation;
without a shift of Fermi surface there would be no

U

FIG. 2. Proposed ¢,-U phase diagram. A represents a
boundary between one and two-dimensional behavior. One can-
not reach the “confined” regime B perturbatively by the path of
turning on ¢ and then U.

response.

The most straightforward way of approaching this
problem seems to lead to nonsense: no response. (The
argument is foreshadowed by Kohn and Luttinger [8].)
We have

R =ti§£}wdw6e(k,w)0;,(k, -w),

G, (k,t) =C0]ck ()i (0|0
=" TV =),
Gh(k,t)=e "' ""(n),

1 —ny ni

G.lk,w)= =,
(k@) h w+te+in

ow—¢€ —in’
where ¢4 =hvr(k —kr) and n defines outgoing boundary
conditions for the causal Green’s function. Clearly, at
T=0, ny(1—n;)=0 and there is zero response. This
reflects correctly the fact that without readjustment of
populations, there is in fact no net energy shift.

This anomaly is traditionally converged by introducing
finite temperature. If

m =f(Ber) ,
we get, from either the frequency or the time representa-
tion,
tINO)T

” .

The response diverges with 1/7, reflecting the coincidence
of two singularities “pinching” from opposite sides of the
real axis. In the time domain, this n singularity is obvi-
ous:

R=tiZf dt(m) (1 —nde ~ M =¢3Y ny
k Y0 k

R=t12nk(l —nk)L"‘-
k 2n

l—nk
2n

The perturbation for each k acts for an infinite time and
is converged only by the artificial factor n. The Matsu-
bara perturbation technique allows us to “fuzz out” the
energies €; by moving the poles off the real axis by an
amount 7, and one gets the right answers, at least for
t LT, for a devious reason which was explored within
Fermi-liquid theory by Kohn and Luttinger and by Bloch
and deDominicis. But as they show, such singularities
proportional to 1/n are the signal for Fermi surface shifts,
for rather obvious reasons as pointed out above.

Now we are ready to approach the interacting problem
correctly. After we turn on U, the space-time Green’s
function becomes, asymptotically,

1 1
[(x —l‘s[)(x —vpt)] 172 (xz-vcztz)a

+e K (x> —x), 0<a< i

G ~eik;x
[4

for Gy, t — —t. There is a multiplicative factor involving
an energy cutoff ~A~ hvg/a, of order 2aA?,

3845



VOLUME 67, NUMBER 27

PHYSICAL REVIEW LETTERS

30 DECEMBER 1991

Fourier transforming this structure is difficult [9]. An
approximation which loses none of the essential physics is
to take advantage of small a and large U (for which
ve/vy>1) to treat the terms (x2—02t%) ~7 as a slowly
varying, logarithmlike term which simply multiplies by
convergence factors (ivet) 2% or x %~ (k —kp)2
whichever is smaller.

Then we can get an adequate approximation to G (k,¢).
Define Ak =k —kp, 0 = % (v.+v,), and Av =0, —v,; then

Golk,)= [ dxe " %3G (x,1)
e " Mnge kg (Ao Ak t) Givet) T2

It is clear that now the convergence factor 7 is essentially
irrelevant; even at kg, t ~ 2% or Ak t29 provides a conver-
gence factor, and everywhere else Jo falls off as V2
The reason is the conversion of the Fermi-liquid pole into
a cut along the real axis, or physically the fact that
charge and spin do not propagate with the same velocity;
hence the singular perturbation has no chance to act.
This is why the result is qualitatively different for the sys-
tem with spin. The response to our perturbation then
works out roughly as

dt(Ak)za e —2nt .

Rt ne(1—ny)
lgl g I epap Akt

It looks as though our convergence factor is being used
twice but we believe this expression gives the right con-
vergent behavior. There is indeed an energy response,
but it is small and entirely due to virtual hopping, not real
transitions, as we see by the fact that the convergence
factor n does not enter the answer.

Formal theory at finite temperature seems to be diffi-
cult; the crude holon-spinon ideas we have suggested in
the past may be the best way to show that at finite 7 or
frequency there is a T-linear conductivity between chains;
this could also be done by gauge methods.

This answer should not be at all unexpected. As we
have repeatedly emphasized, the Luttinger liquid of the
Hubbard model is an incompressible spinon liquid, if we
think of spinons as the limiting case as Z — 0 of electron
quasiparticles (the so-called marginal Fermi-liquid con-
cept, proposed in [10]), and we recognize that if in the
Luttinger liquid, as shown by the exact Lieb-Wu solution,
the spinon Fermi velocity is finite, this must mean that
the self-energy as we approach this limit obeys

. 9%/0k
T 9z/dw

But if 9%/0w— oo, this means 9X/dk — oo, which im-
plies that the spinon liquid is incompressible:

- Ko
1+82/8k

The spinon gas cannot change density without exciting a

=finite .

K 0.
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second type of excitation, the holon, which plays the role
of a density of sites which the spins may occupy. Again,
spin is vital, as is the existence of two different velocities.
This means that one-particle perturbations cannot shift
the Fermi level in momentum space, which prevents elec-
trons tunneling into and out of the liquid. We hope to
show in a later work that the same is true of impurity po-
tentials: The liquid is immune to spin-independent poten-
tials, and hence has infinite conductivity (and does not lo-
calize) even in the presence of impurities. And, of course,
since we have shown that Z— 0 in the 2D Hubbard mod-
el, all these properties hold in that case as well. (Con-
finement is also expected to hold for 2D quantum Hall
systems— see the results of Boebinger [11].)

It is often argued that renormalized perturbation
theory (so-called “g-ology”) is an adequate method to ob-
tain properties of one-dimensional models, in particular,
the Hubbard model. Although some details differ from
the more complete bosonization [6] or *“Luttinger-liquid”
method [12] these seemed irrelevant to many. After 20
years of g-ology, however, we now see that these re-
sponses are different from the conventional assumptions
based on perturbation theory.

The immediate result is relevant for a number of “1D”
systems. It seems likely that the extension to negative U,
and certainly to the ¢-J model, is straightforward, and
that if such systems take on a 1D correlated liquid state
they may confine in the other two directions. The “or-
ganic superconductors,” however, are in general 2D sys-
tems and we expect 2D confinement to occur in some of
these, if not all. We suspect that data on transport in
these systems will reward reexamination from a fresh
point of view.
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