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Variational Theory for Disordered Vortex Lattices
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We derive a variational replica-symmetry-breaking theory for the eAect of random impurities on two-

and three-dimensional vortex lattices. We find that the translational correlation functions decay as
stretched exponentials with exponents which seem to be in good agreement with experiments. We pre-
dict, in the absence of dislocations, long-range orientational order in three and two dimensions.
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Recent Bitter decoration [1] and transport experiments
on high-temperature superconductors have reawakened
interest in the classic problem of the eff'ect of impurities
on the Abrikosov lattice of vortex lines in type-II super-
conductors [2,3]. The two-dimensional (thin film) ver-
sion of this system is closely related to lattices of magnet-
ic bubbles on disordered substrates, for which experi-
ments have also been reported very recently [4]. This
problem was first studied theoretically by Larkin [5],
whose theory has since been elaborated by numerous au-
thors [6-10]. Unfortunately, the exactly soluble model

introduced by Larkin has unphysical features, which we

shall describe below in more detail. In this Letter, we in-

troduce a more realistic model and study it using a varia-
tional replica field theory approach which has recently
been applied to the related problem of a directed mani-
fold in a random potential [11]. Our predictions are
quite diAerent from those derived using the Larkin mod-

el, and are in good agreement with experiments.
The Larkin Hamiltonian is H =H, ~„. ,t.„+H~;„. H, |„.,t,,

is a continuum elastic description of the triangular Abri-
kosov lattice:

H, i„,i,,=— d xdz (C —C ) +tl, u, +C g(8 up
a, P

where a and P are indices denoting the x and y directions,
x and z are "internal" coordinates labeling the vortex
lines in the x-y plane and z directions, u(x, z) is the fluc-
tuation in the x-y plane of the vortex line from its equi-
librium position x, and Cl1, C66, and C44 are the bulk,
shear, and tilt moduli [12]. (We consider the three-
dimensional problem here and below unless referring ex-
plicitly to the two-dimensional case. ) This elastic Hamil-
tonian assumes an underlying crystal lattice and therefore
does not describe a possible entangled phase [3]. It also
implicitly excludes dislocations, but that should not be
too serious a problem for comparison with experiments in

the high-vortex-density regime where dislocations seem to
be very rare [1,4]. The effects of disorder are described
with a pinning Harniltonian H~;„=Jd xdzu(x, z). f(x,
z) in which each vortex is subjected to an independent
random force In Larkin's model, . two different vortices
which wander to the same point in space at diAerent
times feel diferent pinning forces when they are at that
point, because the random force is assigned according to
the label of the vortex, and does not depend on its posi-
tion in space. A related unrealistic feature of this Hamil-
tonian is that there are no metastable configurations of
the vortex lines.

In our model, we use the same elastic Hamiltonian, but
take a pinning potential that depends on the position in

) '+ C44+(ti, u. ) '
a

space of the vortices (although for technical reasons, it is

convenient to consider a general model where the pinning
potential also depends on the internal label x). We take
care to include the discrete nature of the vortices, which
can have an important effect on the results (although one
can still safely use a continuum elastic energy). Thus
we write Hz, „=fdz+„V(r(x, z),z,x}, where r(x, z) =x
+u(x, z ) is the position of a vortex line and V is a Gauss-
ian random pinning potential with zero mean. We as-
sume

2

V(r, z, x) V(r', z', x') =
~

exp

/x —x'f

Qp

(r —r') '
2~xy

(z —z') '
2h,

(2)

where the overline denotes a disorder average and ap is

the lattice spacing in the x-y plane. We introduce a reg-
ularization function f(x) which behaves as x ' for large
x, and use a very small, but positive e—the physical limit
we are interested in is e 0. It is interesting to note that
if f(x) were instead a delta function, our model would
become identical to a d=3 dimensional "directed" mani-
fold with n =2 transverse components in a random poten-
tial. The physical diAerence between our model and that
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one is that. in our model. all the vortex lines see the same pinning potential, while for the -random manifold- problem,
each vortex line sees an independent pinning potential.

To make analytical progress in computing the free energy F, we first average over the disorder using the replica
method. We find an effective replica Hamiltonian:

H„= —g„r d x dz (C 1

—C6) +B,u,' +Cbg(8 up ) + C4+(8, u')
2 Q , a aP a

gg J dz 8"'(x+u'(x, z) —x' —u"(x', z))f(ix —x'i) .
2T ab xx'

(3)

In this formula, all distances are written in units of ao in the x-y plane, and in units of 3,, in the z direction. We have
taken the limit A.-,h, ,„, «ao and introduced C]:C]]aph„C6:C66aph„and C4—:C44aoh, , ' which have dimensions of
an energy, as well as W=(2tr) U„A,Jao which has the dimension of an energy squared. T is the temperature and a
and b are replica indices.

Our method is to find the best quadratic approximation of the Hamiltonian. We take as a trial Hamiltonian (in
Fourier space)

fO 2

Ho= —
g 3 ggu, '(q, q, )(G ')g(q, q, )up( —q, —q, )

2tr ab ap

and use the convexity inequality F(G)=Fo+(H ——Ho)0) F to find the best G, minimizing F(G). We find the saddle-
point equations

[Gt ]aa(q q;) = Ciq +C4q= +
2/2 glaa (&) 2 2f(x)

[1 ( )] s111 p + cos
[8"(x)8"(x)] 't' 8"(x) 8"(x)

X

Bt". (x)
r

e
" ' "f(x) sin'y cos'y

[Bg"(x)8 (x)]'" 8 (x) 8;"(x)
X

81'.b(x)
(sa)

and

[Gt '],~b(q, q-) =—
2tr T x [Bt'."(x)BT'(x)] ' ' Bf'(x) Bt". (x)

cosq x
X

8' (x)
(sb)

where G1 is the longitudinal component of G [13],and

81' (x) =T [[Gt"(q,q. )+Gt. (q, q, ) —2Gt' (q, q, )cos(q x)]cos p
& d qdq.

2R 3

+ [GT'(q, q, )+GT"(q, q, ) —2GT (q, q, )cos(q x)]sin p] .

t

(p is the angle between q and x.) The corresponding for-
mulas for the transverse components GT and BT are ob-
tained by replacing C] with C6 and by inverting the roles
of cos p and sin p. The disorder average of the fiuctua-
tions is determined from the diagonal components of 8;
for example,

Bt (x) —=Bt". (x) =& j[u(x, z) —u(o, z)].x/xj ') . (7)

The "wandering" exponent v is defined by Bt r(x) —x2"
for large x.

The simplest solution to those equations is the "replica
symmetric" one, with G:—G and G =G' . The replica
symmetric ansatz gives scaling results that are qualita-
tively similar to those derived from the Larkin model:
For example, Bt (x) grows for large x as x/gas in three
dimensions, and as (x/MRS) in two dimensions. This rep-
lica symmetric solution is, however, not satisfactory; for
instance, in three dimensions, this is signaled by the fact

that (Rs goes to zero as (Ct /C4) 't T /W' at low tempera-
tures, which is clearly unphysical. Furthermore, there
are many metastable configurations of the vortices within
our model. The nature of the metastable configurations is

physically very similar to those in the random manifold
problem where it has been shown [11] that the replica
symmetric solution is unstable and that replica symmetry
breaking is needed to more correctly account for the
effects of those rnetastable configurations. We thus look
for a Parisi replica-symmetry-broken solution, following
Ref. [11]. The replica indices a&b become, in the limit
n =0, a continuous variable 0» l. » 1 [14] so that the G's
and 8's become functions of (q, q, ) (respectively, x) and
v. For reasons of space, we can only give here the main
results of our replica-symmetry-breaking solution; a full
derivation will be given elsewhere [1S].

We have found a solution (for small q and 1. ) of the
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form

and

~ + oo
1

dq, GI. , T(q,q„)=, , gI. , T
C 2+2v 3r(-', )' '„''"

BL(x) = BT—(x) =
87t 2'

' 2/3

=0.2544

Our solution of the two-dimensional model is very simi-
lar; the final result is that

Bg,T(x, v) = v '"bI., T(xt. ' ")
Cq

(9)
for 1 «x « (—:CT/JW, and

(12)

(but with two different sets of exponents v and co and
scaling functions g and b for v much greater or much less
than a certain v~ discussed below). ro turns out to be the
"energy" exponent, related to v by co =2v+1 (co =2v in

two dimensions) [161. Assuming that C66«C~ ~, we find

that the renormalized shear modulus CT is still much
smaller than the renormalized bulk modulus CI .

Because of the divergence of B for small v, we must
deal separately with two regimes in v. For v ((v+
=eWT/32m C4CT [derived using 81 (l, v+) =1], we can
approximate the sums over x in Eqs. (5) as integrals. In
this regime, we find v = 1/(4+ c), ro = (6+e)/(4+ e), and

gI T(t) =(C4/CI T)' yl" Tg(tyl" T), where yi T=EW/
8TC~, Tv~ and

g(t) =n r
' [1 —(1+r 'i") 'i']

+ dt! v [1 —(1+v ") ' ]4 p
)

For 1» v » v~, we can, because of the exponential damp-
ing factor, approximate the sums in Eq. (5) by keeping
only the x=0 term. We find that in an intermediate re-
gime of q (1»q»g '—= W/C4 CT ), the scaling form
given above still holds, albeit with diAerent exponents:
v= —,', co= —, (and with different yl. T). In this regime,
the saddle-point equations are essentially identical to the
ones analyzed in [11] for the random manifold problem.
The final results for the interesting physical quantities
BI (x) and BT(x) (which measure the growth of longitu-
dinal and transverse Auctuations with distance) are

3r( —', )
Bl (x) =—BT(x) = — =0.2705

4 7ir'i'

(10)

for 1 «x « g, and

2 - 2'/
t x

BI.(x) =—BT(x) =
3 3 1/45

' I/2

=0.43
g lnx

for x»g. (To extract the scaling results in the limits
e 0, x ~, one should set E=4/Inx [15].) Note that
the ratio BT/BL is always precisely equal to 2v+1 (as-
suming CT «CI. ). The correction due to disorder to the
renormalized shear and bulk moduli CT and Cl is posi-
tive and small (for large g): AC6/C6 —(I/g), &Ci/Ci—(c,/ci )(lip) '.

r

1 1
1/2 I/2

8, (x) =—8,(x) =- =0.317
gdlnx

(13)
for x»(. (In this case, we set @=2/Inx. )

In Refs. [17,18], the problem we are considering was
assumed to be equivalent to the random manifold prob-
lem discussed previously [19], where all the vortices feel
an independent random potential. Our results show that
this equivalence is valid only for short length scales x «g.
At larger length scales, the v((v+ region dominates, and
changes the universality class (experimentally, the cross-
over might be difficult to identify, as the exponents in the
two regimes are rather close). The crossover at x =( can
be easily understood: g is the distance at which vortex
lines are typically displaced from their unperturbed posi-
tion by an amount comparable to the lattice spacing ao.
Until that length scale, two neighboring vortices can
indeed be considered to be seeing nearly independent po-
tentials. Note that v+ has an important physical sig-
nificance —T/v+ is the typical value of the energy Iluc-
tuations at scale (, and is thus related to the value of the
critical current [15].

We now brieAy discuss the relation of our theory to ex-
perimental results. We find that the translational cor-
relation function gK(x):—(px(x)pK(0)) (where px(x):—exp[iK u(x, z)] and K is an arbitrary vector) is given
by

gK(x) =exp[ ——,
' K'[81.(x)cos'0+BT(x)sin'e]], (14)

where 0 is the angle between K and x. Thus we predict
that gx(x) should be a stretched exponential, with a radi-
al behavior depending on the wandering exponent v as
exp( —x '). The angular anisotropy of the correlation
function provides an independent measure of v: 1ngK(x,
0=+/2)/Ingx(x, 0=0) =2v+1 (for large x).

In three dimensions, we find a "hexatic vortex glass" as
described by Chudnovsky [7], with long-range orienta-
tion al order, but no long-range translational order.
Chudnovsky's calculation of gK(x) based on the Larkin
model [7] gives a result similar to ours, but with a quanti-
tatively quite different value of v=

& (and v= 1 in two
dimensions. ) In fact, the data presented for the angle-
averaged gK(x) for the three-dimensional 69-6 experi-
ments in Ref. [1] are clearly more consistent with a
stretched exponential with v —0.2-0.3—a pure exponen-
tial fit does not go to 1 at the origin as it must. It should
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be noted that the effective correlation length g,a. defined

by the distance for which gK(x) =e ' may be consider-
ably smaller than our "bare" dimensional correlation
length g. For example, in Ref. [1], K was taken to be a
first reciprocal-lattice vector of magnitude 4x/J3, which
means that (using our 3D random manifold results)

g = [512rr I ( 3 ) /343](, n.(0=0) = 360(,a.(8 =0), so that
at least for these experiments, we are presumably in the
x«( regime. In two dimensions, we find that orienta-
tional order is not destroyed, in contrast with the results
of Ref. [7]. We also predict a slower than exponential
decay for gx(x). It would be interesting to compare
these results with the experiments on magnetic bubbles
[4]. The x » ( regime should be more easily accessible in

two dimensions.
A more precise experimental and theoretical deter-

mination of the exponents and correlation functions
would yield crucial information on the nature of pinning
in these systems. On the theoretical side, it might be use-
ful to include the effects of nonlocal elastic constants [10]
and compute the full correlation functions beyond the
asymptotic scaling regimes.

The experimental systems that we have discussed are
remarkable in that they permit a direct observation of mi-

croscopic configurations. They provide an excellent test-
ing ground for some of the theoretical approaches to the
physics of disordered systems which have been developed
during the last two decades.
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