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Universal Limit of Critical-Current Fluctuations in Mesoscopic Josephson Junctions
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The sample-to-sample Auctuations in the critical current of a disordered Josephson junction are ana-
lyzed by means of a transmission-matrix formalism. If the junction becomes small compared to the su-

perconducting coherence length, the fluctuations at T=O become of order ego/6, dependent only on the

energy gap Ao of the bulk superconductors and independent ofjunction length or mean free path. This
universal limit is reached in weak links formed from point contacts or microbridges.

PACS numbers: 74.50.+r, 74.60.Mj, 85.25.Cp

The question addressed in this paper is: Does the
phenomenon of "universal conductance fluctuations"
have an analog in superconductivity?

In 1985 Al'tshuler and Lee and Stone showed that the
sample-to-sample or "mesoscopic" fluctuations in the
conductance G of a disordered metal wire at temperature
T=O have a root-mean-square value rmsG=e /h (up to2

a numerical coefficient of order unity) [1,2]. This value is
called universal because, unlike the average conductance,
it is independent of both the length L of the wire and the
elastic mean free path l (provided l «L). Universal con-
ductance fluctuations (UCF) have been demonstrated in

a variety of experiments, and stand out as one of the most
remarkable phenomena in mesoscopic physics [3].

A few years later, Al'tshuler and Spivak studied the
mesoscopic fluctuations in the current-phase-diAerence
relationship 1(p) of a superconductor-normal-metal-su-
perconductor (SNS) Josephson junction [4]. They found
that the critical current I,=maxi (P) Iluctuates from
sample to sample with the rms value

rmsl, . =evF l/L

for T«hvFl/k8L . Here vF is the Fermi velocity and L
is the length of the junction, i.e., the separation of the two
SN interfaces (it is assumed that the transverse dimen-
sion of the junction ~ L). The critical-current Iluctua-
tions (1) depend on both L and l, and are therefore not
universal in the sense of UCF.

The theory of Al'tshuler and Spivak applies to a junc-
tion which is long compared to mean free path and super-
conducting coherence length: L»l, (. [The coherence
length is given by g=(gol) '/, in the dirty limit l(((n,
where (n =—hvF/xhn and Ao(T) is the superconducting en-
ergy gap. l The regime l«L«g of a short disordered
junction (which is especially relevant for weak links
formed from point contacts of microbridges [5]) was not
considered. Here we will show that in this short-junction
regime one has

S) N& N2 S2

erties of the junction. This is the analog for the Joseph-
son eflect of universal conductance fluctuations in metals.

The research presented here was motivated by work on
ballistic point contacts (l))L), which showed that the
critical current per transmitted mode takes on the univer-
sal value ego/i't in the limit L «(p [6]—but not in longer
junctions [7].

Our strategy to arrive at Eq. (2) is to relate the
Josephson current through an SNS junction to the
scattering matrix of the normal region, and then to use
the statistical properties of this scattering matrix which
are known from the theory of UCF [1-3]. The model
considered is illustrated in Fig. 1. It consists of a disor-
dered normal region (hatched) between two supercon-
ducting regions S] and Sp. The disordered region may or
may not contain a geometrical constriction. To obtain a
well-defined scattering problem we insert ideal (impuri-
ty-free) normal leads /V~ and jV2 to the left and right of
the disordered region. The SN interfaces are located at
x = ~ L/2. We assume that the only scattering in the
superconductors consists of Andreev reflection at the SN
interfaces; i.e., we consider the case that the disorder is
contained entirely within the normal region. This spatial
separation of Andreev and normal scattering is the key
simplification of our model. The model is directly applic-
able to superconductors in the clean limit (n« lq, where
lq is the mean free path in the superconductor. We will

argue that the qualitative results are not dependent on
whether the disorder extends into the superconductor or
not.

Further assumptions are standard within the theory of
superconducting weak links [5]. The junction width is as-
sumed to be much smaller than the Josephson penetration
depth, so that the vector potential can be disregarded.

rmsl, =ego/lt —L/2 + L/2

for T«T, [T, =Ap(0)/kryo is the .cr.itical temperature].
In contrast to Eq. (1), the magnitude of the critical-
current fluctuations has become independent of the prop-

FIG. 1. Superconductor-normal-metal-superconductor Jo-
sephson junction containing a disordered normal region
(hatched).
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The reduction of the order parameter A(r) in the super-
conducting region on approaching the SN interface is
neglected; i.e., we approximate A =hpexp(+ iiti/2) for
(x( & L/2. (In the normal region (x ( & L/2 one has 6=0
by definition. ) As discussed by Likharev [5], this approx-
imation is justified if the weak link has length and width
much smaller than (. (It is then also irrelevant whether
the weak link is formed out of a superconductor or a nor-
mal metal. ) This is generally the case when the weak
link consists of a constriction. If the weak link is not
small compared to g, one may still neglect the reduction
of the order parameter at the SN interfaces if the resis-
tance of the SNS junction is dominated by the resistance
of the normal region, which in the present model occurs
when I ((L.

The starting point of our analysis is a general relation
between the Josephson current 1(p) and the quasiparticle
excitation spectrum [8]:

I =I
) + I2+ I3,

�

I I

——— gtanh(s„/2k/3T)
2e dip

p

12 = — 2k8 T — dain [2 cosh (s/2k' T) ]2e Bp

„dr I&l'/lgl ~

(3)

where g is the interaction constant of the BCS theory.
The supercurrent is given as the sum of three terms: I ] is

a sum over the discrete spectrum, consisting of the ener-
gies s„(p) G (O, hp); I2 is an integral over the continuous
spectrum, with density of states p(s, p); the third term I3
vanishes for a p-independent ~d ~.

The excitation spectrum consists of the positive eigen-
values of the Bogoliubov-de Gennes equation [9]

&p

IZp
(4)

0
+„—h(N ) = (k„") '/ @„exp[+ik„"(x+ —, L)],

e

where k'" ——(2m/Q2) / (E —E„+o"hs) I/ and o.e —
I

o"=——1. The labels e and h indicate the electron or hole
character of the wave function. The index n labels the
modes, &„(y,z) is the transverse wave function of the nth
mode, and E„ its threshold energy. The eigenfunctions in
lead N2 are chosen similarly, but with L replaced by —L.

where +(r) is a two-component wave function and /fp
=p /2m+ V(r) —EF is the single-electron Hamiltonian
in a potential V. Energies are measured relative to the
Fermi energy EF. In the normal lead N~ the eigenfunc-
tions are

1

+,—.(NI) =
0 (k,") ' N„exp[+ ik„"(x+ —, L)],

In the superconducting lead SI, where A=hpexp(ip/2),
the eigenfunctions are

e„—„(SI)=
i g'j2

(2 e) —I/2(&2/~2 I )
—I/4

x@„exp[~iq„"(x+2 L)], (6)

Siv (E) = ~p(s)

II1 yp( —8) /21 r22
(7)

Here sp is the unitary and symmetric s matrix associated
with the single-electron Hamiltonian &p. The reflection
and transmission matrices r and t are N &N matrices, N
being the number of propagating modes at energy e. (We
assume for simplicity that the number of modes in leads
NI and N2 is the same. )

We will make use of two more s matrices. For energies
c & hp there are no propagating modes in the supercon-
ducting leads S~ and S2. We can then define an s matrix
sz for Andreev reflection at the SN interfaces by c"
=s~c/v"'. The elements of sz can be obtained by match-
ing the wave functions (5) at ~x~ =L/2 to the decaying
wave functions (6). Since /3p«EF, one may neglect nor-
mal reflections at the SN interface [10]. The result is

sw =a
r&

lip/2 t g
—iy/2,

~
(8)

where a=exp[ —i arccos(e/Ap)]. The matrices t and g
are the unit and null matrices, respectively. For c& hp
we can define the s matrix sz&& of the whole junction by
cq"'=sqggcp". The vectors cq" and cq"' are the coef-

while 0„—h(SI) has the label e replaced by h. We have
e, h —(2m/i 2) I/2[E E + e, h( 2 p2) I/2] I/2

and rI'"=p/2+a'"arccos(e/Ap). The square roots are to
be taken such that Req"'" ~ 0, Imq" ~ 0, Imq" ~ 0. The
function arccosr E (0, /r/2) for 0 & t & 1, while arccost
= —i In[i+ (t —I ) '/ ] for t & 1. The eigenfunctions in

lead S2 are obtained by replacing ItI by —
p and L by —L.

The wave functions (5) and (6) have been normalized
to carry the same amount of quasiparticle current, be-
cause we want to use them as the basis for scattering (s)
matrices. Our goal is to express the excitation spectrum
of the SNS junction in terms of the s matrix of the nor-
mal region. To this end we will make use of several
diferent s matrices, which we now introduce.

A wave incident on the disordered normal region is de-
scribed in the basis (5) by a vector of coefficients civ"
—:(c„+( N)I, e„( N2), c h(NI), ch (N2)). (The mode in-
dex n has been suppressed for simplicity of notation. )
The reflected and transmitted waves have vector of
coeflicients c "iv'=(c„(N )I,c„+( N)2, c h( NI), ch (N2)).
The s matrix s~ of the normal region relates these two
vectors, c~"'=s~c~. Because the normal region does not
couple electrons and holes, this matrix has the block-
diagonal form
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ficients in the expansion of the incoming and outgoing
waves in leads 5] and 52 in terms of the wave functions
(6). By matching the wave functions (5) and (6) at
~x~ =L/2, we arrive after some algebra at the matrix-
product expression

current

r

I = sing g tanh
26 I =] ep 2k' T (is)

ssNS=U '(~ —M) '(~ M')—S~U,
' I/2

rg

r

M =as'
,r

(9)

One can verify that the three s matrices defined above
(stv, s~ for s & Ap, ssNs for e& hp) are unitary and satisfy
the symmetry relation s(e, p);J =s(e, —p)j;, as required
by flux conservation and time-reversal invariance.

We are now ready to relate the excitation spectrum of
the Josephson junction to the s matrix of the normal re-
gion. First the discrete spectrum. The condition c;„
=s~stvc;„ for a bound state implies Det(I —s~s~) =0.
Using Eqs. (7) and (8), and the identity

r

Det =Det(ad —aca 'b),
,c d,

we find the equation

Det[I —a(ez) r~ sp(ez)r~sp( —ep) *]=0,

(io)

The determinantal equations (11) and (12) are the key
technical results of this paper.

In the short-junction limit L «g, the determinants can
be simplified further. The condition L«g is equivalent
to Ap «E„where the correlation energy E, =h. /r is.
defined in terms of the traversal time r through the junc-
tion [12]. The elements of sp(e) change significantly if e
is changed by at least E, [13]. We are c. oncerned with e
of order hp or smaller [since p(c, p) becomes independent
of p for e»hp]. For Ap«E, we may thus approximate
sp(G) = sp( 6) = sp(0). Equation (1 1) then takes the
form

Det[(1 e&/Ap)I t ~ (2)0t ]p(0)sin (p/2)] =0 . (13)

Equation (12) reduces to Bp/Bp =0, from which we con-
clude that the continuous spectrum does not contribute to
I(p) in the short-junction limit [12=0 in Eq. (3)]. Equa-
tion (13) can be solved for e„ in terms of the eigenvalues
T„of the Hermitian N x N matrix t ~2t ~q [14],

ep =Wp[1 —
T~ sin'(y/2) ] 't'. (i 4)

Substitution into Eq. (3) finally yields the Josephson

which determines the discrete spectrum. The density of
states of the continuous spectrum is related to sgNs by the
general relation [11] p=(2tri) '(a/ae)lnDetssNs plus a
p-independent term. Using Eqs. (9) and (10) we find

tip 1 tl
Im ln Det[t —a(e) r~ sp(e)r~sp( —s) ] .

Bp tr 8$8e

(i2)

Equation (15) is a generalization to arbitrary transmis-
sion matrix (i.e., to arbitrary disorder potential) of a re-
sult in the literature [15] for the Josephson current
through a tunnel barrier. The generalization is essential
for determining the sample-specific supercurrent fluctua-
tions. A formula of similar generality for the conduc-
tance is the Landauer formula: G = (2e /h )Trtt t
—= (2e /h)Q„=~T„. In contrast to the conductance, the
Josephson current is in general a nonlinear function of
the transmission eigenvalues T„. If the weak link consists
of a ballistic point contact (l»L) with a quantized con-
ductance [3], one has T~ = I for p ~ Np, T„=O for

p & Np, for some integer Np. Equation (15) then yields
(at T=O) the discretized critical current I, =Npehp/It
derived in Ref. [6] under the more restricted condition of
adiabaticity. In the opposite regime l«L of diAusive
transport we may approximate e„=Ap in Eq. (15), since
Tz =8(l/L) « l. Equation (15) then reduces to a linear
relation between I and T„,

eApI = sin(t tanh(hp/2kti T)Trtt
2

(16)

In this regime, and at T=O, the average supercurrent (I)
(averaged over an ensemble of impurity configurations) is
related to the average conductance (G) by (I) =(trAp/
2e)(G)sing. This relation for the supercurrent through a
disordered normal region has the same form as the
Ambegaokar-Baratoff formula [161 for a tunnel junction.
I t diflers from the result obtained by Kulik and
Omel'yanchuk [17] for a point contact in a disordered su-
perconductor, by the absence of higher harmonics in p.
(The fundamental sing term agrees. ) We attribute the
diAerence to the fact that we have assumed a clean super-
conductor (ls » gp) containing a disordered region
(l «gp), while in Ref. [17] both the superconductor and
the weak link are in the dirty limit (i=is «gp). The
difference in the average critical current (I,) is a dif-
ference in a numerical coeScient, not in the order of
magnitude. [Reference [17] gives (I,. ) =C(trhp/2e)(G)
with C = 1.32 instead of C = 1.]

The analysis of Kulik and Omel'yanchuk is based on a
diA'usion equation for the ensemble-averaged Green's
function, and cannot therefore describe the mesoscopic
IIuctuations of I(p) from the average. In contrast, our
Eq. (16) holds for a specific member of the ensemble of
impurity configurations. The statistical properties of
Trtr, ~ in this ensemble are known from the theory of UCF
[1-3]. The central result is that rms Trtt:—CUcr is a
number of order unity, calculated in Ref. [2], which de-
pends weakly on the shape of the junction [18]. Since the
supercurrent (16) is linear in Trtt t, we obtain without
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further calculation the result

rmsI(P) = —,
' CU~q(etio/6)singtanh(Ao/2kttT) . (17)
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