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Fe Impurity in Al: Magnetic or Nonmagnetic?
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First-principles electronic structure calculations were performed for a FeAls; embedded cluster, repre-
senting an Fe impurity in Al. At the equilibrium positions of the Al first neighbors around Fe, obtained
by total energy minimization, it was found that the impurity is nonmagnetic. This result is consistent
with experimental observations and renders unnecessary a microscopic description based on spin fluctua-

tions.

PACS numbers: 75.20.Hr

The problem of the existence and stability of localized
magnetic moments in metals, in spite of the large amount
of experimental and theoretical work, still has many
questions left unanswered. Experimental properties of di-
lute alloys may be divided into bulk (macroscopic) [1]
and local probes [2]. On the theoretical side, a tran-
sition-metal impurity in a s-p host has been described by
the “virtual bound-state” model of Friedel [3] and An-
derson [4]. On the other hand, the theory developed by
Kondo [5] (and later, Wilson [6]) to explain the behavior
of the resistivity of dilute alloys with temperature led to
the concept of a Kondo temperature Tk, below which the
magnetic moment of the impurity is screened by correla-
tions with the conduction electrons and thus cannot mani-
fest itself [7,8]. The Kondo theory, however, did not ex-
plain the T2 dependence of the resistivity at 7— 0; this
behavior was accounted for by the theory of local spin
fluctuations [7,9]. The central concept of spin-fluctuation
theory is the existence of a local moment which fluctuates
with a lifetime € that is very short for systems that
display bulk properties with no evidence of magnetism.

Dilute alloys of 3d transition elements in Al may be
considered as classical examples of “spin-fluctuating” sys-
tems. The low-temperature impurity resistivities of AIM
have maximum values for Cr and Mn. This is opposite to
the well-established local-moment behavior in Cu and Au
hosts, for which the resistivity is double peaked along the
series, with a minimum for Mn [7]. As a possible spin-
fluctuation system, Fe in Al definitely does not show the
Curie-Weiss behavior, characteristic of stable moments,
in the bulk magnetic susceptibilty [10]; this is true also in
the liquid state, at temperatures as high as 1090°C [11].
The variation with temperature of the thermoelectric
power does not show the typical peak of stable magnetic
systems [1,12]. On the side of local experiments, Moss-
bauer spectroscopy of 3'Fe does not show a magnetic
splitting [13], although this is not conclusive evidence of
zero moment since no experiments were made in the pres-
ence of an external magnetic field. The results of recent
local measurements [14] with perturbed y-ray distribu-

3832

tion techniques following heavy-ion reactions and recoil
implantation, which allows probing extremely dilute im-
purity systems, point to nonmagnetic behavior for Fe in
Al If spin fluctuations are considered, the characteristic
temperature derived is > 10* K.

In spite of the overall evidence of nonmagnetic behav-
ior, recent first-principles electronic structure calculations
performed for substitutional Fe in Al, at the Al lattice in-
teratomic distances, found a large magnetic moment on
Fe (1.78 [15] and 1.73 [16]). The question is: Does this
moment actually exist and is it rapidly fluctuating, or
does the experimental evidence result from a nonmagnet-
ic impurity?

To answer this question, we have performed first-
principles local spin-density (LSD) calculations for em-
bedded clusters representing an Fe substitutional impuri-
ty in Al. For the first time, the local lattice relaxation
around the impurity was taken into account, by determin-
ing the Fe-Al(nearest neighbors) (NN) distance which
minimizes the total energy of the system. By performing
spin-polarized calculations, the effect of the local relaxa-
tion on the magnetic moment on Fe was determined.

Calculations were made for an FeAly; cluster embed-
ded in the potential field of an infinite Al fcc lattice, for
several values of the Fe-Al(NN) distance. The self-
consistent field (SCF) local spin-density approximation to
density-functional theory was used [17], with the ex-
change and correlation potentials of von Barth and
Hedin. The single-particle LSD equations were solved
iteratively by means of the linear combination of atomic
orbitals (LCAQ) discrete variational method (DVM)
[18], employing a basis set of numerical atomic orbitals.
This approach has been shown capable of predicting mag-
netic moments in solids with good precision [19].

The variational cluster consists of three coordination
shells (12+6+24) of Al atoms surrounding a central Fe
atom, in the fcc geometry. The spin-dependent effective
Hamiltonian for the cluster is determined from the total
spin densities plotl =pgluster 4 pextat 1 the present work
the spin densities of the external atoms pS*P*' are
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modeled by superposition of free Al atom densities at the
crystal sites of many shells exterior to the cluster.
The cluster density is determined as

"“““‘anlwm(r)l n
where n;; are Fermi-Dirac occupation numbers and i,
are the single-particle eigenfunctions. In order to effi-
ciently solve the Poisson equation for the Coulomb poten-
tial, densities are projected onto a superposition of over-
lapping spherical densities [20]

pmodel —Zf",UIR,,, (r,)]%. 2
Here the amplitudes fy, for atom v, radial shell (n/), and
spin o are found by least-squares error minimization, and
R,; are the numerical LCAO radial wave functions.
Magnetic moments associated with a particular site are
defined as the difference between spin-up and spin-down

e(r, R} =Y [Pm(r) - % {pa(r) +Y'7,6(t—R,) }V’(r) + 0o (1) {exc (1) — pye o (1)}

where the single-particle energy is written as

Peo(r) =Xniotis| Wio(r)|? (6)
1

and is partitioned into atom-localized contributions in a
manner similar to that of Eq. (2). This step introduces
no errors, since the partitioning is constructed so as to
leave the total (integral) single-particle energy invariant.
The second term in Eq. (5) is a correction to the
Coulomb energy due to electron-electron and nuclear-
nuclear repulsion; in the third term, exc and pyc , are the
exchange-correlation energy density and chemical poten-
tial, respectively [17]. The sum and delta function in Eq.
(5) restrict the nuclear contributions to sites within the
integration volume; the prime denotes the omission of in-
teraction of a given nucleus with itself. In numerical
evaluation of Eq. (5), least-squares determined model
densities [Eq. (2)] were used, consistent with the varia-
tional SCF procedure. It was found that 19500 numeri-
cal integration points in both the SCF and energy pro-
cedures (with different sampling), with the use of Eq.
(4), were sufficient to produce an average relative pre-
cision of the order of 0.1 eV in the relaxation energies.
With this degree of precision it is possible to clearly
evaluate the competition between magnetic and nonmag-
netic configurations, even though the absolute errors in
the total energies are of the order of 1 eV. Errors due to
basis-set truncation and the use of model densities, which
are the primary sources of discrepancies, largely cancel
when comparing magnetic and nonmagnetic configuration
energies.

In Fig. 1, the relaxation energies of the FeAls; embed-
ded cluster are shown. Only the Fe-Al(NN) distances
were varied, the positions of the atoms in the second and

Mulliken populations of the basis functions at the site.

The total energy associated with a given volume Q
with nuclei at positions {R,} is defined as the expectation
value (sum over integration mesh) of the energy density
e(r,{R,}) over the volume:

Eq (R} = {R}))q. 3)

We define the relaxation energy as the difference in total
energy between the system with nuclear positions {R}
and a reference system {RY. We take {RY to be the ex-
perimentally determined Al fcc lattice (a=4.05 A) and
Q the cluster volume. In order to control numerical er-
rors, the actual computation of E ¢ is made via point-by-
point subtraction of a system of noninteracting atoms
(NI) located at cluster and host sites [21]:

(4)

Eq=(e(r,IR})—eN(,{RINa+EN'.

| A convenient form for e(r,{R,}) is [22]

(5)

[

third shells being kept fixed, as in the Al host lattice.
From this figure it is seen that the minimum in the ener-
gy is achieved at a Fe-Al(NN) distance d around 2.7 A,
~6% smaller than the NN distance experimentally mea-
sured for the Al host lattice (2.86 A). It is interesting
that the energy minimum is reached at a value of d very
similar to the sum of the Fe and Al atomic radii (1.26
and 1.43 A, respectively). Deviations of the points from
a smooth curve may be observed in Fig. 1; in addition to
the effects of numerical noise in the sampling scheme,
there may be real features due to the constraints imposed
by single-shell (NN) relaxation.
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FIG. 1. Relaxation energy of the FeAls: cluster vs the Fe-
AI(NN) distance d. The arrow shows the interatomic distance
for the pure Al lattice. ©®, nonpolarized calculation; X, spin-
polarized calculation.

3833



VOLUME 67, NUMBER 27

PHYSICAL REVIEW LETTERS

30 DECEMBER 1991

o 30
d(A)

FIG. 2. Magnetic moments u on Fe for the FeAls; cluster vs
d. m, 3d moment; +, 45 +4p moment.

Observing in Fig. 2 the Fe magnetic moments self-
consistently obtained for the same Fe-Al1(NN) displace-
ments, one immediately perceives that the Fe magnetic
moment, which has a total (3d +4s +4p) value of 0.96up
for the calculation at the Al lattice constant, collapses to
zero well before reaching the Fe-AI(NN) distance
d=2.7 A, which roughly corresponds to the energy
minimum. Therefore, our calculations indicate that as
the Al nearest neighbors relax towards the Fe atom, the
increased interaction between host and impurity destroys
the local moment. The abrupt vanishing of moment is
consistent with qualitative features of the Friedel-
Anderson model.

For values of d larger than 2.70 A, we have performed
both spin-polarized and spin-restricted calculations. The
energy difference between magnetic and nonmagnetic
configurations is surprisingly small, even for values of d
larger than in the Al lattice. The main cause of this re-
sult may be seen in Fig. 3, in which the Fe 3d and 3d,
populations are plotted. It is observed that for larger
values of the distance d, increase of the Fe 3d moment is
achieved by depletion of the 3d| orbitals and simultane-
ous increase in 3d occupation, in such a way as to leave
the total 3d population almost unchanged. We find that
differences in the Coulomb energies between spin-
polarized and nonpolarized calculations outweigh by far
the differences in the exchange-correlation term; i.e., a
rigid-band model is inappropriate. The conservation of
the total 3d population largely explains the small net
differences observed. In order to obtain a smooth conver-
gence of the SCF procedure, we have applied a “thermal
broadening” Ae==0.13 eV to the Fermi-Dirac occupations
of the discrete levels, around the Fermi energy. This has
the effect of averaging over configurations within ~Ag of
the ground state, and also smooths the magnetic-
nonmagnetic transition as shown in Fig. 2.

It may be observed that the equilibrium Al lattice con-
stant that would be found in a similar calculation for a
Als; cluster may differ somewhat from the experimental
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FIG. 3. 3d populations of Fe vs d for the FeAls cluster.

value used here as reference; however, this is irrelevant in
the context of the present work, since relaxation can be
measured relative to any convenient configuration. What
we have shown here is that, if the local lattice relaxation
is taken into account, the equilibrium distances obtained
result in an Fe impurity in Al which is nonmagnetic.
This result is consistent with the prediction made apply-
ing the Friedel-Anderson model [3,7].

For the unrelaxed lattice, the magnetic moments of the
Al atoms of the cluster align antiferromagnetically with
the Fe moment, so that the total cluster moment is small-
er than that of the impurity. For example, for d =2.86 A
(Al lattice NN distance) the Fe moment is 0.96up and
the total cluster moment is 0.55u5. The antiferromagnet-
ic response of the Al atoms in the cluster is oscilla-
tory, such that in the first (NN) shell each Al has
1 =—0.011upg, in the second shell +0.002uz, and in the
third shell u=—0.012u3.

To summarize, with the present local spin-density
DVM calculations we have shown that, when local lattice
relaxation is taken into account (an effect not considered
in previous first-principles calculations [15,16]), Fe im-
purities in Al are found to be nonmagnetic. This result
indicates that for this system the nonexistence of a
Curie-Weiss behavior and other experimental evidence of
nonmagnetism is not a result of spin fluctuations, but of
moment quenching due to interaction of the impurity
with the host.
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