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Lattice Boltzmann Model for Simulation of Magnetohydrodynamics
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A numerical method, based on a discrete Boltzmann equation, is presented for solving the equations of
magnetohydrodynamics (MHD). The algorithm provides advantages similar to the cellular automaton
method in that it is local and easily adapted to parallel computing environments. Because of much lower
noise levels and less stringent requirements on lattice size, the method appears to be more competitive
with traditional solution methods. Examples show that the model accurately reproduces both linear and
nonlinear MHD phenomena.

PACS numbers: 52.30.—q, 52.65.+z
Recent interest in lattice-gas methods for solution of

fluid equations and other partial diA'erential equations has
been motivated by the need for e%cient techniques for ex-
amining a wide range of di%cult nonlinear problems on
modern parallel computers. The cellular automaton
(CA) method, with purely local Boolean operations, has
shown promise for hydrodynamics [1-3], MHD [4,5],
and other fluid systems [6]. Another lattice-gas method,
based on the lattice Boltzmann equation (LBE), has re-
cently been developed for hydrodynamics [7,8]. In this
Letter we introduce a lattice Boltzmann equation mode1
for MHD, based on a modification of the dynamical
equation for the 36-bit MHD CA model [5]. We argue
that the LBE model has a number of advantages for
MHD computations relative to the CA approach, and
demonstrate through numerical solutions that the model
accurately reproduces solutions for several fundamental
M HD processes.

The LBE approach shares with CA models the efti-
ciency of local operations, discrete structure, and ease of
parallelization, but requires, relative to CAs, many fewer
lattice sites and maintains a higher signal-to-noise ratio.
In addition, whereas much of the computational eAort in

CA dynamics is involved in the evaluation of complex
Boolean collision operators, the LBE approach affords
additional eSciency due to flexibility in handling collision
terms. There exists a diAerent MHD LBE model pro-
posed by Succi, Vergassola, and Benzi for two-dimen-
sional (2D) MHD. An extension of that model to three
dimensions (3D), however, is di%cult [9].

In the present MHD LBE model, moments of the one-
particle distribution, corresponding to mass density,
momentum, and magnetic field, are shown, in the limit of
long wavelength and low frequency, to satisfy the equa-
tions of incompressible MHD. This result is obtained in
either 2D or 3D, at low Mach number and high P, using
techniques presented in detail for the CA model. We also
introduce a simple and eA'ective single-time relaxation

fab(x, t) = (I —IP.b I ) [fab(x e .t —1)+ A,b(x e„t——

model for the collision operator, which has not been ap-
plied to LBE models previously as far as we are aware.
This leads to spatially homogeneous and easily control-
lable transport coeScients. Demonstrations of the model
include accurate solutions of the classical linear Hart-
mann flow problem and solutions of nonlinear magnetic
reconnection. We develop the MHD LBE model here for
2D; the extension to 3D is straightforward.

We adopt the standard triangular lattice consisting of
hexagonal cells [1], with a cell position indicated by x.
The nearest-neighboring cells are located at x+e, ;
e, =(cos(2tra/6), sin(2tra/6)), a =1, . . . , 6. As in the
MHD CA model [5], one envisions particles residing at
lattice sites, each carrying a vector quantum e, corre-
sponding roughly to momentum, and also carrying an ad-
ditional vector

eb = (cos(2trb/6), sin(2trb/6) ), b = 1, . . . , 6,
conveniently thought of as the magnetic field quantum.
In each cell there are 36 diAerent states, each of which is
labeled by e, and eb, or just (a,b). In contrast to the CA
method, here we do not follow individual particles, but
deal exclusively with the particle distribution function,
f,b(x, t) which is a real-valued positive function of the
discrete time and space. Like the 36-bit MHD CA, the
present model propagates information on the lattice using
a bidirectional streaming algorithm based on a constant
parameter matrix P,b, where IP,bI & 1. Here, the parti-
cle distribution in state (a, b) at position x at time t is
split into two parts. A fractional amount 1

—IP,b I propa-
gates, at time t + 1, to position x+e„while the
remainder propagates to position x+sgn(P, b)eb. In con-
trast to the CA model, this operation is completely deter-
ministic. For clarity, we let the quantity f,b(x, t) denote
the particle distribution at the time of arrival at x. Just
afterwards, the particle distribution is subjected to the
collision operation Q,~, which, in the LBE approach, is
constructed to drive the distribution towards an (as yet
unspecified) equilibrium denoted by f;bq. It follows that
the discrete lattice Boltzmann kinetic equation is

i)f
+IP.bl[f b(x sgn(Pob)eb t I)++ b(x sgn(P b)cb t —1)]

Note that the collision operator O,b(x, t) only depends on the particle distribution function f at the same position and
time. Correspondence of the dynamics implied by (1) to continuum physics is established through the corresponding
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(low-frequency, long-wavelength [2]) continuous equation

8f b(x, t)
+vab' V(fab+ tI b) T~ [(I IPab I )eaea+ IPab

Bt
by expansion to second order in the lattice parameters.
In (2) we have introduced the particle velocity v,b=(1

IPabl)ea+ IP,bleb, which rePresents the mean velocity
of particles (due to bidirectional streaming along either
the a or b direction) in the state (a,b). The appearance
of the collision operator, O,b on the left-hand side of (2),
takes into account the random-walk propagation process.

To clarify the role of collisions in the model, let us
write the distribution as f,b =f;bq+f,'b, where f,'b is the
departure from the local equilibrium, assumed here to be
small. The collision operator, taken to be a function only
of the local particle distribution f=[f,b, a, b= 1, . . . , 6[,
can be now approximated by

O,b(f) =Q,b(f' )+gf'd8n, ,b(f' )/8f d.
c,jj

If the collision operator is chosen so that O,b(f' ) =0,
then A,b(f) ~f'. For the most general case this propor-
tionality would involve a fourth-rank matrix that depends
on the details of the particle collision operator. Here we
introduce [10] the single relaxation time r and the ap-
proximation that 8 O,b (f' )/df, y = —z '6',„Bbd. This

lebeb]:VV(f.b+ &ab) = nab (2)

leads to an explicit and particularly simple form of the
collision operator, t1 =r '(f;bq f,b—) = f /—r.

Let us introduce the macroscopic MHD variables,
mass density n, fluid velocity u, and magnetic field B, and
their relationship to the microscopic state through the
definitions n =g,bf,b, nu =g,bv, bf,b, and

n B=g [Rabea+ Q,beb ]f.b
ab

The matrices Q and R, like P, are 6&&6 circulant parame-
ter matrices, which have been shown [51, on the basis of
rotational and inversion symmetries, to contain just two
independent parameters each. In particular, we denote
them as P =circ[po, p~, —p~, —pp, —p~,p~], g =circ[qp,
q ~,q ~, qp, q ~, q ~], and R =circ[rp, r ~, r'~, r p,

—r ~,r ~]

(circ means circulant matrix). To arrive at a microscopic
equilibrium corresponding to MHD, it is necessary to
select a collision operator that conserves locally the mass,
the momentum nu, and the magnetic intensity nB. A
pseudo-Fermi-Dirac distribution [51, Taylor expanded for
small values of velocity and magnetic field, fits these re-
quirements, and can be written as

f bq=d+2d e, u+ eb B +4d Q„,uu+
2 QbOBB~+2 (e, u)(eb B)

1 1 1 1 1
(3)

In (3), we have defined A~=1 —(Ippl+2lp~l —
pp

—p~)/3, X2=[qp+2q~+rp+r~]/3. In addition, d=n/36 and Q„~—= (e, );(e,), —8;,/2.
The time evolution of the macroscopic fields is now found explicitly. The density is governed by a continuity equation

Bn/Bt+V. nu=0. The equation for momentum transport becomes dnu//dt+V II=0, where the momentum Aux tensorII:—II +II ', with II =p,bv, bv, bf;bq and II ' =(1 —r)p, bv, bv, b[8f;bq/r)t+v, b Vf bq]. Similarly, the magnetic-
field transport equation is found to be BnB/Bt+V A=O, with A—:A +A ', with A =Lb(R,be, +Q,beb)v, bf;& and

A ' =(1 —r)g(R, be, +Q,beb)v, b[af,'bq/Bt+v, b Vf g] . .
ab

These transport equations are easily further reduced to the form of the MHD equations by simplification of the flux ten-
sors. All of the terms in the ideal MHD equations emerge from the Aux tensors II and A . In the limit of low speed
and low magnetic field strength, the incompressible 2D MHD equations are thus obtained. An important diA'erence be-
tween the CA model and this LBE model is that in the CA model a factor G(n)el appears in the final equations, repre-
senting non-Galilean invariance of the model, whereas here G(n)—:1 and Galilean invariance is restored.

The viscosities and resistivities in the LBE model are evaluated from the contributions of II ' and A ' in the
Chapman-Enskog expansion. Here the transport coefticients are more easily determined than in the CA model, by vir-
tue of the simplified single-time (r) relaxation approximation we have used for the collision integral. The exact results
are

[po+2Pi'+3popo(po+po)+3piA(pi+pi)+po+pH+ [polpol+po+2pi'+5lpilpi+po+pi]
12%, ) 24k]

and

u= [ri(Pi' —pB+qo(po+Po) —2ripiPi+5qiPi'+2qopoPo+2qipi(Pi+pi)1+ [qo+qi(5 3lpil)+r~],
12K.2 24X2

where pp=1 —
lppl and p~ =1 —Ip~l. For a given P, Q, and R, we can vary r to make v and u as small as possible,

which will allow us to use the current model to simulate the high-Reynolds-number MHD flows. This completes the
outline of the MHD LBE model.

Several numerical tests of the MHD LBE model have been carried out, using vectorized Cray YMP and parallel
CM-2 implementations. The computational speed of the present model for the following problems is at least 2 times
faster than the spectral code. For all tests, the streaming parameters were pp= —0.200 and p~ =0.1009 (see Table I in
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F'IG. 3. Left: contours of vorticity at time t =5.5, showing a quadrupolelike pattern of vorticity generation near magnetic A

points. Right: shading plots of electric current density, also at t = 5.5. The LBE MHD model evidently captures both nonlinear and
fine-scale aspects of the MHD solutions.

sheet pinch configuration [13], which is known to exhibit
a pattern of complex and nonlinear behavior that falls
generally under the description of magnetic reconnection.
In Fig. 2, contour plots of magnetic field lines are shown,
at a very early time, and again after several characteristic
MHD times (1500 lattice-gas times at a characteristic
magnetic field strength of 0.15) have elapsed. The we]]-
known [13] phenomenon of magnetic island growth is evi-
dent. Magnetic reconnection is also typified by the ap-
pearance of organized small-spatial-scale structures that
appear in the vicinity of the magnetic "Xpoints" at the
boundaries of the growing islands. These structures,
which are somewhat coherent in time, can be described as
a filamentation of electric current density at the X point,
accompanied by a quadrupole pattern of vorticity cen-
tered around the L point. Figure 3 shows that these
structures indeed are uncovered in the LBE dynamics,
and have configurations that are quite similar to the
analogous coherent structures found in many simulations,
including high-resolution Fourier-spectral-method com-
putations [13].

The MHD LBE model introduced in the present paper
is easily implemented for a number of interesting and
even complex MHD boundary conditions [12]. As de-
scribed here, the LBE model avoids the CA diSculties
with Galilean noninvariance, and with the single-time re-
laxation collision model, the viscosity and resistivity are
independent of density. An additional advantage, not dis-
cussed above [11,141, is that the equation of state can be
readily constrained to be, for example, exactly iso-
thermal, again avoiding a problem with velocity-depen-
dent pressure that plagues many CA implementations
[15]. The first numerical tests of the MHD LBE model
indicate clearly that the method captures the basic phys-
ics of MHD, in both qualitative and quantitative terms.
Because of the simplicity and parallel nature of its coding
and the capability to handle complex boundary conditions
and shapes, we suspect that this model may provide a new
approach to model numerically the dynamics of a variety
of MHD systems, ranging from laboratory plasma fusion
devices to space and astrophysical plasma Aows. The po-

tential of the model is greatly enhanced by its straightfor-
ward extension to 3D, and the soon-to-be-widespread
availability of massively parallel computational facilities.
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