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Experimental Determination of a Nonlinear Hamiltonian in a Synchrotron

S. Y. Lee, M. Ball, B. Brabson, D. D. Caussyn, J. Collins, S. Curtis, V. Derenchuck, D. DuPlantis,
G. East, M. Ellison, T. Ellison, D. Friesel, B. Hamilton, W. P. Jones, W. Lamble, D. Li,

M. G. Minty, P. Schwandt, T. Sloan, and G. Xu
Indiana University Cyclotron Facility, Indiana University, Bloomington, Indiana 47405

A. W. Chao
Superconducting Super Collider Laboratory, 2550 Beckleymeade Avenue, Dallas, Texas 75237-3946

S. Tepikian
Brookhaven National Laboratory, Upton, Ne~ York 11973

K. Y. Ng
Fermilab, P.O. Box 500, Batavia, Illinois 60510

(Received 20 September 1991)

The nonlinear beam dynamics of transverse betatron oscillations were studied experimentally at the
Indiana University Cyclotron Facility Cooler Ring. Particles were kicked onto resonance islands and the
properties of these islands were studied. The island tune was determined with high precision by Fourier
analyzing the spectrum containing the island oscillations. The island width was estimated based on a
single-resonance model. The Hamiltonian of particle motion near a resonance condition was thus de-
duced.

PACS numbers: 4lt. 80.Gg, 03.20.+i, 05.45.+b, 29.20.Dh

In recent years, nonlinear mechanics has been studied
in various subfields of physics. Nonlinear-beam-dy-
namics studies have been especially important in the
design of future colliders such as the Superconducting
Super Collider (SSC) and the Relativistic Heavy Ion
Collider (RHIC), since the higher-order multipoles in su-

perconducting magnets are considerably greater than
those in conventional iron magnets. Theoretical studies
[1] of nonlinear fields have been used to predict both the
long- and the short-term behavior of orbiting particles in

an accelerator. In order to better understand the approx-
imations used in theoretical predictions, experimental
studies of resonant behavior are essential.

Several nonlinear-beam-dynamics experiments have
been performed in the past [2]. These experiments stud-
ied general features of nonlinear motion, such as reso-
nance island stability, smear, tune dependence on ampli-
tude, etc. However, the island structure has not yet been
studied in detail. This Letter reports some recent results
of nonlinear-beam-dynamics experiments performed at
the Indiana University Cyclotron Facility (IUCF) Cooler
Ring. We present a method for obtaining properties of
resonance islands and derive the Hamiltonian for the par-
ticle motion near a resonance condition.

For particle motion in a circular accelerator, the hor-
izontal deviation from the closed orbit, x(s), satisfies
Hill's equation:

Here K(s) is the quadrupole strength, Bp=p/e is the
momentum rigidity, and s is the longitudinal particle
coordinate, which advances from 0 to C ( =2+R), the cir-

cumference, as the particle completes one revolution of
the cyclic accelerator, where R is the average radius. The
higher-order anharmonic term, AB~/Bp, which arises
from higher-order multipoles, is normally small. Oscilla-
tions about the closed orbit due to the linear focusing
force of quadrupoies, K(s), are called betatron oscilla-
tions. The number of oscillation periods in one revolution
is the betatron tune, v, which can be adjusted by varying
the quadrupole strength of the accelerator. Both K(s)
and the anharmonic term AB~/Bp are periodic functions
of s with period C. In proton accelerators, the damping
of the phase-space motion due to synchrotron radiation is

negligible; hence the phase-space area of particle motion
is conserved.

Neglecting the small anharmonic term in the Hamil-
tonian, the betatron motion is linear. Hill s equation (I)
can be solved [3] using the Floquet transformation to ob-
tain the solution x =(2p„J)'~ cosp, where J and p are
action-angle variables. Here 2J is the phase-space area
(called the Courant-Snyder invariant or the emittance) of
the betatron motion and p is the betatron amplitude
function of the Floquet transformation (P, is periodic in s
with period C). For each turn around the accelerator, the
angular variable p increases by 2+v, where v is the hor-
izontal betatron tune. The conjugate phase-space coordi-
nate, x' =dx/ds, can be determined using two beam-
position monitors (BPMs). The turn-by-turn tracking of
motion in (x,x') phase space as observed at a given loca-
tion in the cyclic accelerator is called the Poincare map.
Betatron oscillations resulting from a linear force produce
ellipses in the Poincare map.

Nonlinear perturbations in the accelerator include sex-
t.upole fields in dipoles, chromaticity correction sextu-
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poles, octupoles, and some small higher-order random er-
ror multipoles. These anharmonic terms usually do not
significantly perturb the particle motion in phase space
except when the betatron tunes are near to a resonance
condition, which occurs at mv =n for one-dimensional
motion, where m, n are integers. The Poincare map devi-
ates from an ellipse at a resonance condition, where
stable particle motion around fixed points (a stable solu-
tion to the equation of motion) in phase space bounded
by invariant surfaces may occur for nearly integrable
Hamiltonian systems. These stable phase-space ellipses
(called islands) around fixed points are separated by the
unstable fixed points. The particle phase-space trajectory
passing through unstable fixed points is called the separa-
trix.

The IUCF Cooler Ring provides an ideal environment
for nonlinear-beam-dynamics experiments. The Cool-
er Ring is hexagonal with a circumference of 86.82 m.
The relative momentum spread of the beam is about
~0.0001. The 95% emittance, or phase-space area, of
the proton beam is electron cooled to much less than 1 x
mm mrad in about 3 s. The beam lifetime can be as long
as hours.

The experimental procedure started with a single
bunch of about 3 x 10" protons with a kinetic energy of 45
MeV. The cycle time was 10 s. The injected beam was
electron cooled for about 3 s. The bunch length was
about 3.6 m (or 40 ns) and its period of revolution was
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FIG. I. The Poincare maps in the normal coordinates,
(x~,p„,), at the betatron tunes v„=3.7578 (left) and v„
=3.7500 (right) are shown for comparison. The resolution of
the measurement is about 0. 1 mm. The corresponding maps us-
ing the action-angle variables (J~, th~) are also shown in the
lower part of the figure.
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FIG. 2. The FFT spectrum for the betatron motion at the
resonance condition 4v, =15. The FFT spectrum shows the
fractional part of the betatron tunes. Because of the linear cou-
pling, a vertical betatron tune peak is also seen. Along with the
betatron tune lines, the FFT spectrum shows many interesting
smaller peaks, which are due to oscillations around the island
fixed points.

969 ns. The rf frequency was 1.03168 MHz. The beam
was kicked with various angular deflections, 0~, by a
pulsed deflecting magnet with pulse width of 500 ns and a
rise and fall time of 100 ns. The electron-cooling system
was turned off 20 ms before kicking. The subsequent
beam-centroid displacement was measured by two BPMs,
with an rms position resolution of about 0. 1 mm. The
stability of the horizontal closed orbit was measured to be
less than 0.02 mm. The turn-by-turn beam positions
were digitized and recorded in transient recorders. A to-
tal of 4096 turns was recorded in the available memory
buAer for each kick.

The resonance structure was investigated using dif-
ferent orbit deAector strengths. Transverse displacements
(x~,x2)„were measured at the nth turn in the two BPMs.
The relative betatron amplitude functions and the beta-
tron phase advance between the two BPMs were deduced
from the turn-by-turn data of (x~,x2). The phase-space
coordinates were then transformed to the normal coordi-
nates (x~,p„~)„,where p~~ = —

—,
' (dP„/ds)x~+P~xl. For

linear betatron motion, the phase-space ellipse in the nor-
mal coordinates is a circle [3]. Figure 1 shows the Poin-
care map in the normal coordinates, where the betatron
tune is v„=3.7578 for the left graph and v, =3.7500 for
the right graph. The Poincare map in the right part of
the figure shows that particles were kicked onto the
fourth-order resonance islands. The particle motion re-
turned to the same island every fourth turn. Within an
island the particle trajectory traced out an ellipse around
the corresponding stable fixed point. Because of the in-
herent coupling of horizontal and vertical betatron
motion, the ellipse around the stable fixed point in an is-
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FIG. 3. The FFT spectrum of the motion around a fixed

point in an island. The island tune is v;,].,„d=0.0013.

land is smeared.
The fast-Fourier-transform (FFT) spectrum of the be-

tatron motion at the fourth-order resonance, v =3.7500,
is shown in Fig. 2. Note that the vertical betatron tune
due to linear betatron coupling is also observed at
v~ =5 —0.3124. The ratio of the betatron peaks in the
Fourier spectrum is a measure of the amount of betatron
coupling. We purposely moved the vertical betatron tune
away from the horizontal tune to reduce the eAect of the
betatron coupling.

The frequency of oscillation about the island provides
useful information. Using the data of Fig. 1, the FFT
spectrum of oscillations in a single island, i.e., every
fourth turn around the ring for the fourth-order re-
sonance, is shown in Fig. 3. Note that there are two
dominant peaks: one located at v„p)' g v VJ + 1

=0.0524~0.0007 due to linear coupling and another
corresponding to the island tune v;,~„.„d=0.0013 4-0.0007.
The accuracy of the island tune measurement is limited

by the available memory in the transient recorders.
Without linear coupling, the particle would have complet-
ed one oscillation around an island's fixed point after
I/v;, ~.„„dorbital revolutions. The small-amplitude oscilla-
tion around the island fixed point is also an ellipse.

The one-dimensional resonance island ellipse shown in

the right-hand side of Fig. 1 is obscured by the linear
coupling. Yet the island structure is retained. The
motion is a superposition of the more rapid coupling os-
cillation and the slower resonance island oscillation. The
phase-space trajectory appears as the coupling oscillation
winding around a resonance island ellipse (see Fig. 4).
For the coupling tune of 0.0524 at the fourth-order beta-
tron resonance condition, it takes five island turns (e.g. ,

the first, fifth, ninth, thirteenth, and seventeenth orbital

FIG. 4. The phase-space points (dots) of the island in the
third quadrant shown on the right-hand side of Fig. 1 are
displayed with the corresponding five-island-turn running aver-
age (diamonds). The averaged five-island-turn centroids move

along an ellipse around a stable fixed point of the fourth-order
resonance.

turns for the first island, etc.) for the particle to complete
one loop around a centroid in the coupling ellipse. The
size of the coupling loop depends on the betatron coupling
strength. A five-island-turn moving average of the
phase-space coordinates will eAectively eliminate this
rapid coupling motion, revealing the slower resonance is-
land oscillation. The moving average will trace out an el-
lipse around the stable fixed point of an island with a
characteristic frequency of the island tune v;, ~„.„d=0.013,
which corresponds to a period of over 800 orbital turns or
200 island turns.

Near the single resonance, mv=n, the Hamiltonian
can be approximated by [I] H=Hp(J)+g(J)cos(mg
—nH —g). Here (J,p) are the conjugate action-angle
variables of the betatron motion, and g is a phase factor
determined by the distribution of nonlinear elements in
the accelerator. The betatron tune is given by v(J)
=BH/6 J= vp+ aJ, where we have used a first-order
Taylor series expansion in the action variable with vo as
the betatron tune at zero betatron amplitude and e the
coefficient of the first-order expansion. g(J) is related to
the resonance strength and O=s/R is the orbital angle
around an accelerator. For the present study, m =4 and
n =15.

A canonical transformation with generating function
F2(&,J)) =[&—(n/m)0]J~ can be performed easily to
yield a new Hamiltonian, H =Hp(J~) —(n/m) J~+g(J~)
xcos(mlle~ —g), where (J~,p~) are the new conjugate
action-angle variables with J~ =J. Note here that the
new Hamiltonian H is a constant of motion; the particle
trajectory follows a constant contour of H. Fixed points
of the Hamiltonian are given by BH/BJ~ =0 and 6H/6&~
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FIG. 5. The stable ellipse around island fixed points in the
action-angle variable is fitted by the Hamiltonian of Eq. (2)
with v; [;,pd 0.0013, obtained from the FFT analysis. The ac-
tion and angle variables are obtained from averaging every five
island turns in each island in order to eliminate the effect of
the coupling resonance. We found a =0.00048+ 0.0001 (tr
mmmrad)

island-turn moving average in each island in order to re-
move the coupling motion. Using the Hamiltonian in Eq.
(2), we obtain a =0.00048 ~0.0001 (tr mmmrad)
The corresponding separatrix is also shown in Fig. 5.

In conclusion, we studied properties of fourth-order
nonlinear resonance islands. One interesting feature is
that the betatron coupling does not destroy the structure
of one-dimensional resonance islands. Experimental data
were used to determine resonance island parameters,
v;, t„.„d, J„and a. The Hamilton ian for the particle
motion was derived near the resonance region for the first
time. Using the experimentally derived Hamiltonian, a
more reliable prediction of particle motion may be possi-
ble. These experimental nonlinear-beam-dynamics stud-
ies may prove to be useful in an efTort to understand the
dynamical aperture and the long-term behavior of parti-
cle motion for future colliders, such as the SSC and
RH IC.

We thank Dr. S. Peggs and Dr. R. Talman for helpful
discussions. We also thank C. Merton for his participa-
tion in the experiments. This work was supported by the
National Science Foundation and the U.S. Department of
Energy.

H = —,
' a(J~ —J, ) +g(J, )cos(marti~

—g)+ (2)

Thus the equation of motion in the resonance region
satisfies the pendulumlike equation of motion. The island
tune is given by vIs~„.„d=m~ug~ . Hence the resonanceI I/2

strength is given by g =v;,~„.„d/m a. The island width, or
the maximum diA'erence in the action variables between
the stable fixed point and the separatrix, is given by
AJ =J( —J, = 2[g(J, )/a] '1 =2v;, (.„„d/ma.

The parameter a could be obtained from the slope of
the betatron tune as a function of the kicked betatron
amplitude J. Alternatively, the ellipses of particle motion
around the stable fixed point can be described by the in-
variant Hamiltonian of Eq. (2). Substituting g=v;, ~,. „d/
m a into Eq. (2), the parameter a can be obtained
through matching the particle trajectory with the contour
of the Hamiltonian. Figure 5 shows a (J,p) plot of the
data of the island ellipses of Fig. I after taking a five-

=0, i.e., v~ (J
~ ) —n/rn+g'(J

~ )cos(mtti~ —g) =0 and
sin(mtt, —g) =0.

Let J„bethe corresponding action such that the beta-
tron tune satisfies a resonance condition, i.e., mv(J„)=n.
The Hamiltonian can then be expanded around the reso-
nant action:
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