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Femtosecond Time-Resolved Molecular Multiphoton Ionization: The Nap System
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We report here the first experimental study of femtosecond time-resolved molecular multiphoton ion-
ization. Femtosecond pump-probe techniques are combined with time-of-Aight spectroscopy to measure
transient ionization spectra of Na2 in a molecular-beam experiment. The wave-packet motions in

different molecular potentials show that incoherent contributions from direct photoionization of a singly
excited state and from excitation and autoionization of a bound doubly excited molecular state deter-
mine the observed transient ionization signal.

PACS numbers: 33.80.Eh, 33.80.Rv

Multiphoton ionization of diatomic molecules has been
studied recently by a variety of techniques and is well un-
derstood [1]. The ionization is predominantly due to
resonance-enhanced multiphoton processes. Dynamical
aspects of the interaction of laser radiation with mole-
cules have been studied by several groups in great detail
[2]. The ionization and fragmentation of H2 via unbound
doubly excited states is a particularly interesting example
[3]. We recently performed femtosecond spectroscopy of
molecular autoionization and fragmentation of Na2 [4].

Here, we report novel time-resolved studies of molecu-
lar (Na2) multiphoton ionization using femtosecond
pump-probe techniques. In an independent study,
Dantus, Janssen, and Zewail have resolved the fem-
tosecond dynamics of wave-packet motion in I2 using
multiphoton-ionization mass spectrometry in a molecular
beam [5]. Our results reveal unexpected features of the
dynamics of the absorption of many photons by a diatom-
ic molecule. The time-resolved motion of wave packets in

different molecular potentials clearly shows two diAerent
multiphoton-ionization processes rather than two dif-
ferent internal ionization pathways. The direct photoion-
ization of a singly excited Rydberg state and the two-
electron excitation of bound molecular states with subse-
quent electronic autoionization result in diAerent final
ionic states. The measured transient ionization spectra
(Fig. 1) show that both processes determine the time evo-
lution of molecular photoionization. For the first study of
the time-resolved dynamics of molecular multiphoton ion-
ization in a molecular-beam experiment applying fem-
tosecond-laser pump-probe techniques, we have chosen
the spectroscopically well-studied Naz [6] as a prototype.

Femtosecond pump-probe studies in the gas phase have
been pioneered by Khundkar and Zewail [7]. Relevant to
this work, they investigated the motion of wave packets in

molecular potentials for a variety of neutral molecules
(e.g. , Nal, l2) by detecting the emitted lluorescence from
excited states.

In our femtosecond-laser-molecular-beam studies of
multiphoton ionization of Naq, we combined several ex-
perimental techniques. Femtosecond laser pulses were
used to induce and probe the molecular transitions. A su-
personic molecular beam generated the Na2 molecules
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FIG. 1. Transient multiphoton-ionization spectrum of Na2.
The envelope intensity variation and the oscillatory structure of
the Na2+-ion signal reveal two contributions out of phase by
180 related to wave-packet motions with 306- and 363-fs oscil-
lation periods.

and restricted the initial states to v"=O,J". Time-of-
Aight (TOF) spectroscopy was used to determine the
mass of the ions and the released kinetic energy of the
ionic fragments. Femtosecond pulses were generated in a
home-built colliding-pulse mode-locked ring dye laser and
amplified in a two-stage dye amplifier, pumped by an ex-
cimer laser (Lambda Physik LPX 120). A Michelson ar-
rangement delayed the probe laser relative to the pump
laser. Both the pump and probe laser beams enter the in-
teraction region collinearly, with the same polarization,
and perpendicular to the molecular beam. We used
recompressed laser pulses of 70-fs duration, of about
100-A spectral width centered at 627 nm, and of 0.2-p3
energy (I =50 GW/cm ) for both the pump and the
probe. The laser pulse energy was kept this low to simpli-

fy the study of the basic physical processes. The laser
system and the experimental arrangement are discussed
in detail elsewhere [8]. The ion TOF spectrum we obtain
from the interaction of the femtosecond laser pulses with
a supersonic sodium molecular beam consists of "slow"
and "fast" Na ionic fragments, a strong Naq+ signal, and
cluster ions Na„+ up to n =8.

The observed femtosecond pump-probe delay spectrum
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of the molecular-ion signal Na2 is shown in Fig. 1. The
spectrum shows a beat structure superimposed on a
strong modulation of the ionization signal. Because
pump and probe are identical, the signal is symmetric
around zero time delay. The modulation period estimat-
ed from the peak-to-peak separation is T~ = 306 fs. Evi-
dent from the beat structure in Fig. 1, there are two fre-
quencies involved and therefore there are two contribu-
tions to the transient-ionization spectrum, and the en-
velope intensity variation reveals them to be 180 out of
phase. These are the most important findings of this ex-
periment. With the given experimental parameters, the
dynamics can best be understood in terms of the motion
of wave packets in bound molecular potentials. Phase-
shifted oscillatory motion of a wave packet has also been
observed by Bowman, Dantus, and Zewail [9] in multi-
photon excitation and depletion experiments with molecu-
lar iodine.

A Fourier analysis of the spectrum in Fig. 1 yields two
major groups of frequencies, one centered at 108.7 cm
from 106.9 to 110.5 cm ', and a second centered at 92.0
cm ', from 90.2 to 93.9 cm

From the transient-ionization spectrum (Fig. I) and
the Fourier frequencies, we identify two major contribu-
tions to the multiphoton ionization of Na2. The Na2 mol-
ecules in the ground state A 'Z~+ and v" =0 are pumped
into excited electronic states by a laser pulse whose 70-fs
duration is much shorter than the vibrational period of
Na2. The classical vibrational period for the v'=10-14
states of the excited electronic 2 state are T~ = 304.6-
310.6 fs. Thus, the pump laser forms a coherent superpo-
sition of the vibrational eigenstates v' =10-14 in the
2 'Z„+ state. The vibrational wave packet so created at
the inner turning point oscillates between the classical
turning points of the 2-state potential well. The motion
of the wave packet is determined by the vibrational ener-

gy spacings of the A state [10], which are 109.5, 108.8,
108.1, and 107.4 cm ' for the levels t. '=10 to v'=14.
These values agree with the frequency components de-
rived from the Fourier analysis. The 2-state wave packet
is transferred via the 2'II~(3s, 31) Rydberg state into the
Na2+ X Z+ ionization continuum by the time-delayed2 g +probe pulse. From the oscillatory Na2 signal (period
T~ = 306 fs) which is in phase with the preparation of
the wave packet at the inner turning point at t =0, the
motion of the wave packet in the 8 state is evidently
probed only near the inner turning point. Probing at the
outer turning point would result in a 180 phase shift,
which, however, is not observed with the 306-fs motion.
Note that a direct transition from the 2 state into the
Na2+ X X~+ ionization continuum results in a time-
independent ionization signal, because the shapes of the
potentials are so similar. Analysis based on difference po-
tentials shows that only through the resonant intermedi-
ate 2'H~ state, which acts as a "window" for the two-
photon-probe transition, can the time-dependent motion
of the wave packet be seen [11]. The relevant Rydberg-
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FIG. 2. Potential curve diagram illustrating the preparation
of the wave packet in the 3 state and the two-photon-probe pro-
cess transferring the motion of the wave packet into the Na2+
Ic-'Z~+ ) ionization continuum.

Klein-Rees potential curves and the preparation and
probing of the 2-state wave-packet motion are shown in

Fig. 2. The two-photon-probe process occurs periodically
at the inner turning point after each round trip.

Based on the derived second set of Fourier components
of about 92 cm ' (Tn= 363 fs) and the fs-laser wave-
lengths around 627 nm, we conclude that in the second
ionization channel the pump laser creates a coherent su-
perposition of vibrational levels in the 2 H~ state by a
two-photon transition. The absorption of two laser pho-
tons induces transitions from v" =0 to vibrational levels
v

* = 11 to v
*= 18. Using the known spectroscopic con-

stants of the 2'IIs state [12], the vibrational spacings of
these coherently excited levels are calculated. They range
from 89.7 to 94. 1 cm ' and agree with the frequencies
90.2 to 93.9 cm, obtained in the Fourier analysis.
From a difference-potential analysis [11] we know that
this vibrational wave packet is formed at the inner turn-
ing point of the 2'H~ state. The time-delayed fs-probe
pulse transfers this wave-packet motion into the ioniza-
tion continuum, but only, as the 180 phase shift of the
T&= 363 fs period clearly shows, at the outer turning
point. Using only Franck-Condon arguments, there is no
reason why direct photoionization of the Rydberg elec-
tron should take place only at the outer turning point for
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v*. Moreover, a difference-the given vibrational levels v
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then propagates to the outer turning point, where the
probe laser transfers the motion into the continuum by
exciting a second electron, forming doubly excited Na2
molecules. The decay of these molecules by electronic
autoionization and autoionization-induced fragmentation
accounts for the time structure Tli and the phase shift of
180 seen in the Na2+ ionization and in the Na+ frag-
mentation spectra.

Another interesting result is obtained at laser intensi-
ties of =500 GW/cm, where we found that excitation
of two electrons with subsequent autoionization is more
important than direct photoionization of a singly excited
electronic state.

In conclusion, this is the first study in a molecular-
beam experiment to use femtosecond pump-probe tech-
niques in combination with ion spectroscopy to study the
dynamics of molecular multiphoton ionization. The
analysis of transient Naq+ ionization and Na+ pho-
tofragmentation spectra measured with 70-fs pump and
probe pulses shows that wave-packet oscillations in the
2 'X,„+ and the 2'Hg potentials occur. From the observed
two oscillation periods T~ and Trt, the 180 phase shift
of T~, and the Na+ fragmentation spectrum, we con-
clude that for Na2 two diff'erent multiphoton-ionization
processes exist, to require incoherent addition of the in-

tensities to account for the measured signal. The direct
photoionization of an excited electron, where one pump
photon creates a wave packet in the 4 'Z„+ state and two
probe photons transfer that motion via the 2 Hg state
into the ionization continuum, is one process. The second
involves excitation of two electrons and subsequent au-
toionization. Here two pump photons create a wave

packet in the 2 'Hg state and one probe photon transfers
its motion into the ionization and fragmentation continu-
um, but this happens only at the outer turning point of
the 2 'Hg state periodically after each round trip. In this
case the probe photon is absorbed at the earliest about
180 fs after the pump photons were absorbed.
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