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Resistivity and Thermopower of Heavy-Fermion Systems
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The characteristic temperature dependence of the electronic transport properties of heavy-fermion
systems can be reproduced within the self-consistent second-order U-perturbation treatment of the
periodic Anderson model. This approach, within which explicit calculations are possible in the limit of a
large spatial dimension d for correlated lattice electrons, properly fulfills the Luttinger sum rules. Here
we present the first explicit calculations of transport quantities and show that an excellent reproduction
of the typical experimental results is possible by simply using the d =oo result for d =3.

PACS numbers: 71.28.+d, 71.10.+x, 72.15.Qm

Heavy-fermion (HF) systems (e.g., CeAl;, CeCusSiy,
CeCus, UBe;3) and also some of the less “heavy,” more
intermediate valent (IV) systems (e.g., CePds, Celn;)
usually have a small residual resistance at T=0 K, a rap-
id increase of the resistance for low temperatures 7 <K T,
a maximum (of the magnitude of 50-100 pQcm) at
some low temperature T ., Which is of the same order of
magnitude as the low (Kondo) temperature scale Ty
characteristic of the HF system, and a resistivity (loga-
rithmically) decreasing with increasing temperature for
higher temperatures T > Tnax [1-3]. The negative tem-
perature coefficient (NTC) of the resistivity in the high-
temperature regime is usually interpreted as a manifesta-
tion of the Kondo effect in a concentrated system [1,2].
Thus a crossover from a high-temperature regime, in
which the conduction electrons are incoherently (impuri-
tylike) scattered from the (periodic) arrangement of
rare-earth or actinide ions, to a coherent low-temperature
state, in which heavy quasiparticles with infinite lifetime
for T=0 are formed, is commonly assumed to be most
characteristic of HF systems and is most clearly reflected
in the resistivity behavior described above.

But there exist a number of metals containing rare-
earth or actinide ions with an unstable f shell, which also
exhibit a rapid increase of the resistance for low tempera-
tures, but then the resistivity curve only flattens and no
NTC is obtained [3]. This different behavior is observed
in most Yb-based systems (e.g., YbAl;, YbCuAl, Yb-
Cu,Si»), but also in some of the Ce-based systems (e.g.,
CeRh», CeSn3) and in UPt; [1,2]. Therefore, the resis-
tivity maximum and the NTC are not necessarily the
features which are most characteristic of HF materials,
but may be only one of two possibilities for the tempera-
ture dependence of the resistance.

The thermoelectric power Q(T) (or the Seebeck coef-
ficient) of HF and IV systems also shows characteristic
anomalies when compared to the thermopower of usual
metals: Q(T) is absolutely very large, of the order of
50-100 uV/K (compared to 1-5 uV/K usually), and it
always has an extremum at some low temperature 7 .,
which is roughly of the magnitude Tx and thus of the
temperature of the resistivity maximum (f there is any).
But the giant magnitude and the extremum in Q(7T) usu-
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ally exists also for IV or HF systems which do not have
the resistivity maximum (e.g., in YBCu,Si, [4] and
YbAI; [5]). In some (but not all) HF systems (e.g.,
CeAl; [6]) the thermopower changes sign and exhibits a
further extremum for very low temperatures T << T pax.

In this Letter we show that all mentioned aspects con-
cerning the temperature dependence of the electronic
transport properties of HF and IV systems can be ex-
plained within one single transport theory. We show that
the qualitative tendency and also the absolute magnitude
of resistance and thermopower can be understood within
the framework of the periodic Anderson model (PAM).
No additional scattering mechanism (phonons, etc.) is
necessary to account for the observed behavior. The
correlation between the f electrons, and thus the elec-
tron-electron interaction, is responsible for the tempera-
ture dependence of the transport quantities both in the
low- and in the high-temperature regime.

We study the basic version of the PAM, which reads

H =kz: f(k)cidcka+kz [Ejfl';a_fko_'— %Uf:iafkafl;—cfli—v

+V(ehofRoF fhocr)T. (1)

Thus no realistic, but only a twofold, (spin) degeneracy is
taken into account for the f and the band-electron sys-
tems, which are coupled by the hybridization V. To cal-
culate the dynamical conductivity we start from the Kubo
formula

] 1 ” .
GA»X(w)=H—a)—xjxj_‘(w+10) , )

where @ =Na“ is the volume of the d-dimensional system
(/V the number of lattice cells, a the lattice constant), @
is the frequency of the electrical ac field, and

i, (2) = —if;we”’<[jx(t),jx (0)Ddr 3)

denotes the current-current response function. The cur-
rent operator x component which is consistent with the
PAM (for constant, not k-dependent, hybridization) is
given by [7]

_LZ de(k) 4 (4)
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Inserting (4) into (3) and (2) we are left with the cal-
culation of two-particle Green functions of the type
<<CIJ{6 Ckasclz'a'ck'a'»: .

Of course we need a suitable approximation to explicit-
ly calculate these two-particle Green functions. But, as
has been emphasized in particular by Martin [8], it is im-
portant for a proper transport theory of the PAM that the
approximation used fulfills the Luttinger theorem and the
related sum rules [9]. According to the Luttinger theo-
rem the self-energy imaginary part vanishes at the Fermi
energy p according to ImZ(E+i0)~(E —u)?+ (zT)2
Then for T=0, one has (heavy) quasiparticles with an
infinite lifetime at the Fermi surface, and this property
must be fulfilled within an approximation to account for a
proper reproduction of the observed coherent ground
state. But away from the Fermi surface there should be a
finite lifetime even at 7=0, and at the Fermi energy
ImZ(E +i0) should become finite with increasing tem-
perature. It is not trivial that an approximation really
reproduces these properties. Many of the successful
theories of the PAM [10-13] map the PAM for U— oo
onto an effective one-particle two-band model, i.e., a
correlation-free problem with renormalized parameters.
These theories can properly account for the coherent
ground state and the heavy effective mass of the quasi-
particles, but so far they have been able to account for
finite lifetime effects only in the very low temperature
(~T? regime [10,11] and are not yet able to describe
the crossover from the coherent zero-temperature ground
state to an incoherent high-temperature state. Other
transport theories for the PAM [7,14,15] may violate the
Luttinger theorem; thus their applicability to the (co-
herent) low-temperature regime is questionable. There-
fore, in a recent transport treatment two different approx-
imations were used [16], namely, the slave-boson mean-
field theory for the low-temperature regime, but an
effective single-impurity model for high temperatures.
Thus a transport theory for the PAM that is valid for low
and high temperatures and describes the crossover be-
tween these two regimes does not yet exist in spite of at-
tempts for more than ten years.

The simplest approximation, which automatically ful-
fills the Luttinger theorem and the resulting sum rules, is
provided by the self-consistent second-order perturbation
theory (SOPT) in terms of the Coulomb correlation U.
Though the SOPT should be valid only in the weak-
coupling regime of small U and U is considered to be rel-
atively large for HF systems (of the order of 5-10 eV),
meaningful results, in particular large enhancements of
the effective mass, can be obtained for the PAM, as has
been emphasized by Yamada and Yosida [17]. But for
technical reasons explicit computations within the SOPT,
in particular studies of the temperature dependence of ac-
tual physical quantities like the resistivity, were not possi-
ble until recently. Such SOPT calculations become possi-
ble in the limit of large dimensions, d — oo [18], as intro-

duced by Metzner and Vollhardt [19]. Following [19] we
study a simple-cubic tight-binding dispersion

d
e(k)=2tlz cos(k,a) (5)
=

in the limits d— o, t— 0, keeping dt?=const. Only
with this scaling do lattice models for correlated electron
systems remain nontrivial and keep all their essential
properties, while actual computations are greatly simpli-
fied. We have shown, in particular, that for d =oo the
SOPT of the PAM reproduces quasiparticles with infinite
lifetime and a heavy effective mass for low temperatures,
a characteristic low-temperature scale, and the crossover
from a coherent ground state to an incoherent-scattering
high-temperature state [18], and we have demonstrated
that the limit d =co is able to approximately describe
three-dimensional systems [20], probably because the lo-
cal approximation of a site-diagonal, k-independent self-
energy, which is correct for infinite d (not only within the
SOPT, but in general) [19,21,22], is already fairly good
for d =3.

Here we present the first application of this d =oo ap-
proach for the PAM to the calculation of the temperature
dependence of transport quantities. As the vertex correc-
tions are obtained from the self-energy diagrams by cut-
ting Green-function lines, the vertex corrections must be
local when the self-energy is local; but as in the site rep-
resentation the current operator is a nonlocal operator
(connecting nearest-neighbor sites), the current vertex
corrections must vanish for 4 =oo, as has been mentioned
already by Khurana [23]. Therefore one can expect that
neglecting the vertex corrections to the conductivity
should be a good approximation for three-dimensional
systems. Then we obtain in the limit @ — O for the static
conductivity

—yoeal e _dr
o (0=0) =1 " aE 4 \LE), ©

with
L(E)=7%/— 3 ImGimo (E+i0) ImGims (E+i0),  (7)
RR'c
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. 1
GRrio(z) =— (®)
RR (Z) N%
the band electron Green function, Z(z) the f-electron
self-energy, and f(E) the Fermi energy. The thermo-
power Q can also be calculated from the function L(E)
according to

0= JdE(—=df/dE)(E —u)L(E)
eT[dE(—df/dE)L(E)

These equations are still exact for large d (within the
linear-response theory), provided that one inserts the ex-
act f-electron self-energy. X(z) is the quantity one can-
not determine exactly for the PAM even for d =oo, and

(©))
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we have calculated it within the SOPT [18]. Measuring
energies (and temperatures) in units of the effective
width of the unperturbed conduction band, which is cen-
tered around zero energy, i.e., setting 2¢%d =1, we have
calculated the temperature dependence of the resistivity
p(T) for the parameters E,=—0.5, U=1, V' =0.4, and
different choices for the total number of electrons per lat-
tice site n. The results are shown in Fig. 1 for nyy
=0.2, 0.4, 0.6, and 0.8 (corresponding to less than half
filling, as the maximum number of electrons per site is 4).
Obviously, for n,=0.8 (and also for larger values
0.8 < my <2) we obtain the typical behavior with a
small residual resistance, a rapid increase ~ T2 for very
low T, an almost linear T dependence for T < Tk, a max-
imum near Tmax=0.1 (= Tk for this parameter choice),
and a NTC for higher temperatures. For ny =0.6, how-
ever, we obtain the other possible characteristic behavior,
namely, a rapid increase of p(T) for low T but then a
flattening, and no NTC. Further decreasing ny gradual-
ly leads to a resistivity behavior characteristic of normal
metals. The (7-dependent) chemical potential u has
been determined self-consistently for a given ny. For
no=0.2, u is far below the effective f-level position Ey,
i.e., we are in the almost empty f-level regime qualita-
tively describing La or (because of particle-hole symme-
try) Lu compounds. Increasing ny, moves u nearer to E,
and increases the valence. For ny =0.6 we are in a
weakly IV regime and for 0.8 <ny <2 we are in the
strongly IV and real Kondo lattice regime, in which case
we obtain the characteristic resistivity curve with a max-
imum and a NTC. The appearance or nonappearance of
a NTC in the resistivity p(T) curve seems to be correlat-
ed with whether the Fermi energy falls into the lower, as-
cending branch of the effective f-electron density-of-
states peak around E; (being the case for ny < 0.6), or
whether it lies in the central region of this peak, near the
hybridization (quasi) gap [18] (being the case for
0.8 < nyt). There is a corresponding correlation with the
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FIG. 1. Temperature dependence of the resistivity obtained
for the PAM within the SOPT for d =c0 and the parameters
Er=—05, V=04, U=1. (1) nu=0.8, (2) n=0.6, (3)
Niot =04, (4) Hyot =0.2.
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valence and the effective mass; for otherwise similar pa-
rameters (systems), a NTC is more likely to occur in the
system with the larger valence or a larger effective mass
mey. This is in qualitative agreement with experimental
results, for instance the very recent transport measure-
ments for YbInCuy and YbAgCu, [24]; in the IV system
YbInCuy4, no NTC is observed in the p(T) curve, whereas
in the isostructural YbAgCu, (with a larger valence and
an about 3 times larger m.r) a NTC occurs. But the ab-
solute value of m.q, which in our model is determined by
the parameters ¥V and U, is not essential for the high-
temperature resistivity slope. Therefore, no NTC may
occur in a HF system like UPt; with a relatively large
mgy, and an IV system like CePds with a much smaller
mer may exhibit the NTC in the p(T) curve. It is in-
teresting that we obtain not only the characteristic behav-
ior of very low temperatures but also that of intermediate
temperatures (roughly corresponding to room tempera-
ture) within the PAM alone, ie., without additional
scattering mechanisms. According to Eq. (6) the static
conductivity is calculated in units e2a?"4/hd, where h is
Planck’s constant. Therefore, in a strict limit d — o the
conductivity would vanish because of the factor 1/d (re-
sulting from the factor 72 from the two current opera-
tors). But, of course, we are interested in the nonvanish-
ing transport quantities in leading order in 1/d. Setting
simply d=3 and inserting a lattice constant of several A,
our resistivity unit is of the magnitude of a few mQcm,
i.e., the maximum of the resistivity (~0.04) corresponds
to 100 x4 Q cm, which is just the magnitude which is typi-
cal for metallic HF and IV systems.

Corresponding results for the temperature dependence
of the thermopower are shown in Fig. 2. We observe the
extremum in Q(T) approximately at the same tempera-
ture T max, Where the resistivity has its maximum, and this
extremum in Q(T) is also present when p(T) does not
have the maximum and the NTC, in complete agreement
with the experimental findings. We obtain a change of
the sign of Q(T) for relatively high temperatures, and for
low temperatures we do not always find a change of the

QM)
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FIG. 2. Temperature dependence of the thermopower Q(7);
parameters as in Fig. 1.
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sign, but only for certain parameters [cf. curve (3)]. Ob-
viously our treatment can qualitatively explain and repro-
duce all the main and most characteristic features con-
cerning the temperature dependence and the absolute
magnitude of the resistivity and the thermopower of IV
and HF systems.

Our conclusions are the following: (1) For nearly the
whole temperature regime, i.e., for low and intermediate
T, the transport quantities of HF and IV systems can be
understood within a treatment of the PAM, which prop-
erly reproduces the Luttinger theorem, i.e., Fermi liquid
behavior for very low T, but a finite lifetime for inter-
mediate and higher 7. (2) Both observed resistivity be-
haviors, with or without a NTC, can be obtained within
the same treatment by changing slightly only one param-
eter. (3) The relevant scattering mechanism responsible
for the T dependence of p(7T) and Q(T) is the scattering
of the conduction electrons from the correlated f-electron
system, i.e., the scattering from local spin fluctuations,
which are implicitly contained within the correlated f-
electron system. (4) Vertex corrections are not important
for a qualitative reproduction of the typical electronic
transport behavior. (5) The large d limit for correlated
lattice electron systems can be used to calculate measur-
able physical quantities like resistivity, and it can de-
scribe three-dimensional systems.
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