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Probing the Kondo Resonance by Resonant Tunneling through an Anderson Impurity
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%'e compute the current as a function of voltage for resonant tunneling through an Anderson impurity

in the low-temperature, Kondo, regime. The diA'erential conductance curve has the same structure as
the zero-bias spectral function, but is sharper because a finite voltage tends to destroy the Kondo reso-
nance. This destruction of the Kondo resonance cannot be mapped onto an increase in the effective tem-
perature at the impurity site, The calculation is performed in the symmetric Anderson model using per-
turbation theory in the Hubbard U repulsion.

PACS numbers: 72. 15.QI, 73.40.6k

Mesoscopic systems allow us to study eAects of interac-
tions, such as the electron-electron interaction, in radical-
ly new situations. With improved microfabrication tech-
niques it has become possible to reliably manufacture
tunneling systems which exhibit suppression of tunneling
due to charging eAects. In a range of systems —from
small metal-insulator-metal tunnel junctions connected in

series [1,2], to quantum dots and narrow wires [3-5], to
tunneling between localized states in an insulator [6]—the Coulomb interaction suppresses tunneling for cer-
tain ranges of applied voltages, leading to what is now
commonly called the Coolomb blockade. As one contin-
ues to go to smaller samples and lower temperatures, one
approaches the limiting case of tunneling through a single
localized state with a Hubbard U repulsion. This is pre-
cisely the Anderson model [7]. It is well known that a
new resonance, called the Kondo resonance, appears near
the Fermi energy in the Anderson model at low tempera-
tures. The tunneling spectrum of this system oA'ers the
possibility of seeing features of the Kondo eAect not
readily observable in bulk systems.

Earlier work on this model examined the conductance
above the Kondo temperature [8,9] and the linear-re-
sponse conductance for all temperatures [10,11]. The
linear-response conductance is proportional to the impuri-
ty spectral function at the Fermi energy in equilibrium
[11]. By varying the temperature, an external magnetic
field, or the energy of the impurity state, one can enhance
or destroy the Kondo resonance and hence change the
linear-response conductance. While all of these are use-
ful signatures of the Kondo eAect, they are not powerful
experimental probes of the Kondo resonance. For exam-
ple, both bulk systems and this one-impurity system show
a logarithmic temperature dependence in the resistance
or conductance at high temperatures [8,9] followed by a
rounding oA' at low temperatures [10,11]. In this paper
we show that by measuring the nonlinear current-voltage
characteristic and the diA'erential conductance at low
temperatures, one can see structure which is closely relat-
ed to the spectral function of the impurity state. Also,
the nonlinear IV characteristic probes the Kondo eAect
out of equilibrium while linear-response conductance only

probes the equilibrium properties of the Kondo eAect.
Thus, the diA'erential conductance not only provides a sig-
nature of the Kondo eA'ect, but a valuable new probe of
the Kondo resonance.

We consider a one-dimensional tight-binding model
with a Hubbard U repulsion at the n =0 site [8-11]. The
energy of the central site is t. p, and the site energies in the
right (n ~ I ) and left (n ~ —1) leads are UR and Ut. , re-
spectively, with Ut —Utt equal to the voltage drop, e~ V~.
All the hopping matrix elements are equal to 8 except
those coupling the central site to the right (WR) and left
(Wt ) leads. In addition to defining the Hamiltonian, it is
necessary for a nonequilibrium problem to define how the
system is perturbed from equilibrium. In our calculation
we start initially at t = —~ with no Hubbard U repulsion
at the central site, but with two diA'erent chemical poten-
tials, pI =p+UI and pR =p+Up, for electrons coming
in from the left and right leads, respectively. The in-
teraction is then turned on adiabatically using the pertur-
bation theory of nonequilibrium quantum-statistical me-
chanics [12,13]. The same results are obtained by turn-
ing on both the hopping onto the central site and the in-
teraction adiabatically.

Even though U may be large compared to the hopping
rate onto the central site, perturbation in U yields quali-
tatively the correct results for the spectral function and
other low-temperature properties of the Anderson model
[14,15]. Indeed, Zlatic and Horvatic have shown that the
exact solution of the symmetric Anderson model is ana-
lytic in U [16]. Recent quantum Monte Carlo calcula-
tions of the spectral function for the symmetric Anderson
model show close agreement with the perturbation theory
calculation when one keeps only the order-U contribu-
tion to the self-energy [17].

Applying nonequilibrium quantum-statistical mechan-
ics to resonant tunneling through an Anderson impurity
as described above, we find that the currents in the right
and left leads, IR and Il, which are equal in steady state,
may be expressed in terms of the density of occupied and
empty states for one spin at the impurity, n .,(co) and
n„v(ro) [18]. No spin indices appear in n „(co) and
n„„(co)because the ground state is assumed to be a sing-
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I, =2„d~2r, (~) [n.„(~)[1 —f'(~)]
n, p(—co)f (co)I .

The current in the left lead is the negative of Eq. (1) with
R L. Interactions enter JR and II only through the
density of occupied and empty states.

It will be useful to write the current in terms of the
spectral function, a(co) =n„,(co)+n, p(co), whose in-
tegrated intensity is 1. Let ep(co) be the energy of the
central site renormalized by the coupling to the leads,
I (co) =I c(co)+I g(co), and o„(co) be the retarded self-
energy. Then a(co) is given by

1 1a(co) = ——Im
co —ep(co)+ ir(co) —cr„(co)

(2)

For a noninceracting system the ratio of n„,(co) to a(co)
is an effective Fermi distribution function, f' (co), which
is the weighted average of the Fermi functions in the two
leads:

let [14]. The current entering the right lead is given by
the product of the tunneling rate, 21 R(co), the density of
occupied states at the central site, n„,(co), and the proba-
bility that a state in the right lead at energy cu is empty
[1 f—(co)], where f (co) = [1+e "" ] ' [19]. Like-
wise, the current leaving the right lead is given by the
product of 2I R(co), n, p(co), and the probability that a
state at energy co in the right lead is occupied, f (co).
The net current in the right lead is the diA'erence of the
current entering the right lead minus the current leaving
it:

where the energy dependence of the integrands is to be
understood. The first line in Eq. (5) is the noninteracting
expression for the current with the full spectral function
replacing the noninteracting spectral function. The sec-
ond line is new and shows that the nonlinear current is
not a simple generalization of the noninteracting result.
However, in the case of wide bands in the leads, where we
can neglect the energy dependence of the I 's, the second
term in Eq. (5) is zero because of the current-conser-
vation condition, Eq. (6). In the following we will be tak-
ing this wide-band limit so only the first line in Eq. (5)
contributes.

We have calculated the current and spectral functions
using the second-order self-energy of Refs. [14,15]. In

general these self-energies do not lead to a current-
conserving approximation, i.e., Eq. (6) is not zero; howev-

er, in the symmetric Anderson model (ep= —U/2) with
the extra symmetry I ~ =I R this approximation for the
spectral function does conserve current. We thus exam-
ine only this case. In Fig. 1(a) we have plotted the
current as a function of voltage for three different tem-
peratures. The zero-temperature current shows a sharp
rise at zero voltage, which rounds oA' and becomes almost
linear. This feature disappears with increasing tempera-
ture.

To bring out the structure in the current-voltage char-
acteristic, the differential conductance, dI/dV, is shown in

Figs. 1(b) and 1(c). From Eq. (5) the derivative dI/
de~ V~ at zero temperature would be equal to I a(co) eval-
uated at co =e

~
V~/2 if the spectral function did not

I L(co)f'( )co+I R(co)f (co)fCA

rl. (co)+rR(co)
(3)

n, (co)

a(co)
2r(co)f' (co)+o& (co)

2r(co)+ I;„(co)
(4)

In the presence of interactions f' (co) is only part of
n, (co)/a(co) because electrons can scatter inelastically
in addition to entering from the two leads. Let the inelas-
tic scattering rate at energy co be I;„(co)= —2Imo, (co)
and the "scattering-in" self-energy be o &(co) [12]. The
general formula for n, (co)/a(co) is then
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A similar expression holds for n, p(co)/a(co) with f' (co)
replaced by 1

—f' (co) and cr & (co) replaced by the
"scattering-out" self-energy, o & (co).

Using Eqs. (1)-(4) the average current, 1=(IR+Ic)/
2, and current-conservation condition, IR —IL =0, are
given by the exact expressions

4I I I RI = Cco a(f f)—
I I+I R

0 0 t I t I i I i I i i l i I i I

4 2 0 2 4
e~V~/zl'=~/I'

FIG. 1. Current-voltage and differential conductance curves
for a tunnel junction consisting of single symmetric Anderson
impurity equally coupled to two leads. (a) The current at T=0
(solid curve), 0.25l" (dotted curve), and 2.5I (dashed curve).
As the temperature is increased the low-voltage structure disap-
pears. (b), (c) Comparison of the diff erential conductance
(solid curves) to the zero-bias spectral function (dotted curves).
At both T=O and T=0.251 the differential conductance has
the same shape as the zero-bias spectral function but it is

sharper. The Kondo temperature is TA =0.05I (U/al = 2.39).
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FIG. 2. Destruction of the Kondo resonance by an applied
bias. As the voltage is increased the spectral weight is shifted
away from the Kondo resonance towards the two side peaks.
Eventually, for large voltages, there is no remnant of the Kondo
resonance.

change as a function of the applied voltage. Both the
T =0 and T =0.25I = 5 Tg diff'erential conductance
curves show the resonance near the Fermi energy (ro =0)
and the side peak at U/2 of the zero-bias spectral func-
tion. At these temperatures the differential conductance
is actually sharper than the zero-bias spectral function,
indicating that the spectral function is changing substan-
tially as the voltage is increased. Thermal smearing dom-
inates at high temperatures and the differential conduc-
tance is smoother than the zero-bias spectral function.

To see how the spectral function changes we have plot-
ted it in Fig. 2 for three different applied voltages at zero
temperature. As the voltage is increased to e~V~ =0.8I
the Kondo resonance becomes smaller and the spectral
weight is shifted to the two side peaks. This shifting of
spectral weight to the side peaks is what causes the
differential conductance to be sharper than the zero-bias
spectral function. At large voltages there is no remnant
of the Kondo resonance.

Raising the temperature has an effect similar on the
spectral function to applying a voltage. Is there a cor-
respondence between temperature and voltage? The in-

elastic scattering rate for small voltage, temperature, and

energy is proportional to ro +(xT) + —, (e~ V~), sug-

gesting that there is such a correspondence. However,
the ratio n, (ro)/a(ro), which is a Fermi function in

equilibrium, has steps for a finite voltage at zero tempera-
ture [Fig. 3(a)]. These steps are due to electrons which
come from the leads without scattering inelastically. In
Eq. (4) they are contained in f' (ro) and have magnitude
I /(2I +I;„) evaluated at ro =e [ V ~/2. The part of

n, ( r)o/ (ar)owhich involves electrons which have scat-
tered inelastically, a &(ro)/I;„(ro), is a smooth function,
although it is not quantitatively equal to a Fermi function
[Fig. 3(b)].

FIG. 3. Search for an eAective temperature. In equilibrium
the ratios n, (ar)/a(co) and cr&(m)/I;„(co) are Fermi functions.
If applying a voltage is the same as raising the temperature,
then for a nonzero bias these ratios should also be Fermi func-
tions. (a) n, (co)/a(co), which involves electrons which come
from the leads without scattering inelastically, has a discon-
tinuity and is not a Fermi function. (b) a&(co)/I;„(co), which
involves electrons which have scattered inelastically, is qualita-
tively similar, but not quantitatively equal, to a Fermi function.

In this paper we have seen that the diAerential conduc-
tance for tunneling through an Anderson impurity allows
one to "see" directly the Kondo resonance. In the sym-
metric Anderson model the fact that Kondo resonance is
destroyed by increasing the voltage does not wash out the
structure in the dinerential conductance, but actually
enhances it. Although applying a voltage and raising the
temperature do have similar eAects on the Kondo reso-
nance, a finite voltage cannot be mapped simply onto a
temperature increase.
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