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Morphological Instability in Epitaxially Strained Dislocation-Free Solid Films
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We perform the first analysis of the morphological instability of a growing epitaxially strained
dislocation-free solid film. We derive an evolution equation for the film surface based on surface

diffusion driven by a stress-dependent chemical potential.

From the time-dependent linear stability

problem we determine the conditions for which a growing film is unstable. Our results reveal that the
critical film thickness for instability depends on the growth rate of the film itself, and that the instability
we describe exhibits many of the observed features of the onset of the “island instability.”

PACS numbers: 68.55.—a

It is well known that epitaxially deposited films grown
layer by layer can undergo transitions to growth forms
that have three-dimensional islands. Previously, it had
been believed that this transition was due to the presence
of elastic stress and stress-relieving interfacial disloca-
tions. However, recent experimental work has shown that
epitaxially strained thin films can undergo transitions to
islandlike morphologies without the creation of misfit
dislocations [1-5]. Two systems for which this transition
from layer-by-layer to island growth have been observed
are Ge/Si [1-3] and InGaAs/GaAs [4,5].

Motivated by these experimental results, we have
developed the first theory describing the morphological
development of a growing dislocation-free epitaxially
strained planar thin film. Our work is a departure from
earlier analyses in which the presence of dislocations is a
prerequisite for instability [6,7]. Since the growth of a
thin film is an inherently kinetic process, we feel that a
dynamical description of the growth of the film as well as
the development of interfacial instabilities is essential to
make contact with experiment. Thus, the thermodynam-
ic, or energy minimization, arguments that have been
used previously to predict stability of films [6,8,9] have
not been employed. Equally as important are the elastic
states of both the film and the substrate; for this contrast,
as we shall see, has a large influence on the development
of nonplanar morphologies. Our theory incorporates the
differences in lattice parameters and elastic constants be-
tween the film and the substrate and so is quite different
from analyses of the stability of semi-infinite uniaxially
stressed solids [10,11]. We rigorously couple the elastic
state of the film to the chemical potential using the ther-
modynamics of elastically stressed solids [12-14], allow-
ing for the development of a dynamic description of the
morphological evolution of a growing film. In this Letter
we shall develop a theory for the linear stability of both
growing and static films. It may be the case that the in-
stability we describe gives rise to island formation; future
work on the nonlinear evolution of this instability will
determine whether this is the case.

The model system is comprised of three phases: The
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solid substrate is semi-infinite and occupies z <0, the
solid film is in the region 0 <z < h(x,y,t), and the vapor
lies in z > h(x,y,1). We assume that the solid phases are
single-component crystals that are free from defects such
as dislocations or grain boundaries, but may contain sub-
stitutional vacancies. We assume that the interface be-
tween the film and the substrate is coherent, so that the
film experiences a misfit strain due to differences in the
lattice parameters of the film, a;, and the substrate, ay.
We further assume that there is no lattice relaxation
around vacancies and use isotropic linear elasticity to de-
scribe the deformations. Under the above assumptions
the stress tensor is given by

T=AV-wWi+ulVu+ Va) "1+ nGr+2u)1,

where A and p are the Lamé elastic constants, u is the
displacement vector, | is the identity tensor, n=~(a,
—ag)/as is the misfit strain in the film, and 7=0 in the
substrate.

We assume that the system is isothermal and take the
solid phases to be in mechanical equilibrium, V-T=0.
For simplicity, we take the pressure in the vapor to be
zero. A balance of forces on the film/vapor interface then
gives n- T=0 on z=h(x,y,t), where n is the unit normal
to the film surface. Continuity of displacements and
forces at the coherent film-substrate boundary yields
2-T=2-T% and u=u" on z=0, where Z is the unit vector
in the z direction, and where TS and u® are the stress ten-
sor and displacement vectors of the substrate, respective-
ly. The equations for mechanical equilibrium along with
the constitutive equations for stress yield the partial
differential equations for the displacement field which are
solved to determine the stress state of the film and the
substrate.

We consider only the mass transport mechanism of sur-
face diffusion along the film/vapor surface. The surface
flux of atoms, Jg, is taken to be proportional to the sur-
face gradient of the diffusion potential [14-16],

DsV

Js=— kT VsMi. on z=h(x,p,0),
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where D; is the surface diffusivity of atoms, v is the sur-
face density of lattice sites, k is the Boltzmann constant,
T is the absolute temperature, and VsM, is the surface
gradient of the diffusion potential. Using the thermo-
dynamics of stressed solids [12-14] with a reference state
for the film of zero strain, and under the additional as-
sumptions of isotropic surface energy, zero surface stress,
and an ideal solution of vacancies, the gradient of the
diffusion potential on the film/vapor surface can be writ-
ten as

VsM . =QVs(c'c'+6) on z=h(x,p,t),

where Q is the volume of a lattice site and o' is the sur-
face energy of the film in the reference state. The quanti-
ty k' =V§-n' is the curvature of the surface in the refer-
ence state which can be written in terms of the actual in-
terface position, A, and the displacements at the surface
[17]. The quantity 6 =5 T-S-T is the strain energy den-
sity of the film at the surface, where S is the isotropic
elastic compliance tensor.

The motion of an interface r=[x,y,h(x,y,1)] in the
presence of a volume flux of atoms V from above is given
by the accumulation of atoms due to surface diffusion
[16] and the aggregation of atoms incident upon the sur-
face:

%:—=—Q(VS~JS)n+(V'n)n. )
After Mullins [16], the z component of Eq. (1) gives the

general nonlinear surface evolution equation,

on____ D S A
a  (1+hi+h})'"? 1+hi+h}’

where D =DsvQ?/kT, V is the z component of V, and
subscripts on A imply partial derivatives with respect to
the subscripted variables. Equation (2) is reminiscent of
the evolution equation of Srolovitz [10] who analyzed the
stability of a uniaxially stressed semi-infinite solid. How-
ever, it differs because the & term accounts for the pres-
ence of a film with a different elastic state than the sub-
strate. Further, Eq. (2) includes the effect of film
growth, and the curvature term «' is given in a thermo-
dynamically rigorous form and thus includes the (minor)
corrections from the displacement field in going from ac-
tual to reference states.

We now examine the morphological instability of a
two-dimensional film for the case of (i) a static film of
thickness ko and (ii) a film growing at speed V. Both
cases are considered simultaneously by taking the basic-
state film thickness to be 7 =ho+ Vz. The basic-state dis-
placement fields correspond to uniform relaxation strain
in the film in the z direction: #3=EFEz, u;=u,=0, and
i’ =0, for i =1-3, where E=n(3r+2u)/(A+2u), and
where the subscripts denote the Cartesian components of
the displacement vectors. We perturb the basic-state
solution, substitute into the governing equations, linearize

Vi(a'k'+6)+ (2)

in the disturbance quantities, and use normal modes pro-
portional to exp(iacx +ia,y). The solutions to the result-
ing differential equations for the displacement fields can
be substituted into Eq. (2) to obtain an ordinary dif-
ferential equation for the normal-mode amplitude % (1) of
the perturbation to the planar surface:

L A TR 1OF 3)
dt
where
o=Dia’6oF(ah) —a’c’'[1 — koG (ah)]}, )
_ n(Gr+2yu) _2n°uGr+2yu)?
Atp 0 2w
Flx) b1+ xb,+b;sinhx coshx +2b, sinh%x
xX)= )
b4+ x2b,+2b,sinhx coshx + b3sinhx
Gle) = bs+2b,sinhx coshx +b3sinhx

bs+ x2bo+2b, sinhx coshx + b3sinh?x
by=p(A+2)(AS+2),
by=(A+DIAS+1)+2p—p2(AS+3)],
b3=AS+1)A+3)+2p+p2(AS+3)(A+1),
ba=(A+2)2(AS+1)/(A+1),
bs=(A+2)[p+(AS+1)],

and where a=(al+a?)"?, p=p/u®, A=A/u, and A®
=A5/uS. The linear stability results also have important
length and time scales given by /=06"/6¢ and t=/%/Dd’,
respectively.

Equation (3) can be solved using normal modes in time
when the basic state is static (¥=0). In this case, the
normal-mode amplitude is given by

il.(t) =’;()€6’ s

and the growth rate o is identically given by (4) with
A =hy. One can plot the growth rate o versus the distur-
bance wave number a for fixed film thickness ho. The
curve intersects the origin at zero slope, rises to a positive
maximum with increasing wave number, and then de-
creases monotonically, crossing the c=0 axis at a..
Modes with wave numbers smaller than a. grow; those
having larger wave numbers decay. For thin enough
films the instability is thus characterized by long waves
since a.h < 1. A long-wave instability is consistent with
observations of film instability involving perturbations
with wavelengths much longer than the thickness of the
film [2].

The cutoff wave number a. is a function of the static-
film thickness Ao, as shown in Fig. 1 for different values
of film stiffness p=u/uS. When p=0, the static film is
absolutely unstable for all film thicknesses. When the
substrate and the film have identical elastic constants (p
=1), perturbations cannot distinguish the substrate/film
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FIG. 1. Linear stability results for a static film (no deposi-

tion) for different film stiffnesses p. A film of a given thickness
ho is unstable to perturbations with wave number less than a..
The length scale / is defined below Eq. (4). The stiffness of the
film p is given by the ratio of shear moduli for the film and sub-
strate. The Poisson ratios for both the film and the substrate
are taken to be + (A=AS=2). For p=0 (rigid substrate)
there exists a critical film thickness below which the film is
stable.

interface; hence the stability results are independent of
the film thickness and correspond to those of an infinitely
thick film. Thus, in this limit of identical elastic con-
stants we can recover the stability results for an elastical-
ly stressed semi-infinite solid [10] if we (1) neglect the
correction to the curvature in going from the actual state
to the reference state, and (2) assume a particular form
for the unspecified elastic constant [10], M =4u(L+pu)/
A +2u).

Figure 1 also shows that, when p <1, the range of un-
stable wave numbers is smaller than that for p=1,
reflecting the stabilizing effect that a stiffer substrate has
on the film. This stabilizing influence is consistent with
the observation that deformation of the substrate plays a
role in the formation of coherent, dislocation-free islands
[1,5]. For the case of a perfectly rigid substrate, p =0,
instability is predicted only for film thicknesses exceeding
a critical value [18] A, given by

_, A+2u)0—E)
200+u)

This critical thickness gives the onset of morphological
instability for a static film without dislocation generation
and is not to be confused with the thickness for the onset
of dislocations [19,20], although it is of the same order of
magnitude in most cases.

For a growing film, V=0, the basic state varies with
time and thus normal modes in time cannot be used to
solve (3). However, (3) can be integrated directly to give

h. Q)
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FIG. 2. Linear stability results for a growing film (Ge on Si
substrate). Solid curves correspond to the maximum perturba-
tion growth rate at different temperatures. The dashed curve
represents the effective growth rate of the planar film, V/A.
Perturbations grow relative to the film when the perturba-
tion growth rate (solid curves) is larger than V/h (dashed
curve). The material parameters [21] used are (in cgs units)
7=0.0418, o' =1927, Ds=8.45x10 ®exp[(—0.83 eV)/kTI,
£ =0.568x10', A=0.371x10'2, x5=0.682x10'2, 15=0.525
x10'2, v=1.5%10"", and @ =1.7x10 "%,

the time evolution of the perturbation amplitude:

h(t) =hoexp [J;Ia(s)ds] . (6)

For a time-dependent basic state there is also no single
way to measure stability as with the normal-mode growth
rate of the static problem. We define the relative growth
rate X as the growth rate of perturbations relative to the
growing basic state:

-y -1 -
A_] 1[4]=0__L. @
h dt | h h(t)
Thus, a perturbation growing more slowly than the basic
state has £ <0 and the amplitude of the perturbation
shrinks relative to the film thickness.

Figure 2 shows the stability results for a growing film.
The growth rates of the perturbations are very sensitive to
temperature, as can be expected from the exponential
character of the surface diffusion coefficient (the growth
rate is also very sensitive to the misfit scaling like n®).
When the basic state is growing faster than the perturba-
tions, perturbations appear to shrink relative to the film.
Thus, at 150°C we predict that films become unstable at
a thickness of about 0.4 nm. At 350°C the growth rate
of the perturbations exceeds that of the basic state even
at very small film thicknesses, predicting that the film be-
comes unstable almost immediately. Experimentally [3],
the transition from layer-by-layer to island growth at

y=
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350°C and V=0.005 nm/min occurs at 3 monolayers
(ML) (0.4 nm) for these growth conditions. The
discrepancy between theory and experiment may be due
to the omission in our model of inherently thin-film
effects such as the molecular interaction of the film with
the substrate (bonding) and/or anisotropic elasticity.
Tersoff [9] has shown in a molecular-bond-energy calcu-
lation for the static film that a molecular interaction with
the substrate can stabilize the film for thicknesses up to 3
ML (0.4 nm). Including such effects in this model might
give the observed critical thickness. In effect, the film
would become unstable when the film thickness exceeds
the interaction range of the substrate. At 22°C the
basic-state growth rate is larger than the growth rate of
the perturbations, even for very thick films. This is con-
sistent with the experiments of Asai, Ueba, and Tatsuya-
ma [3] who observe that at room temperature (and at a
slightly lower growth speed of 0.001 nm/min) films grow
layer by layer up to at least 6 ML (0.8 nm). The insta-
bility is postponed to greater thicknesses at lower temper-
atures because of the “kinetic stabilization’ of the grow-
ing film.

These results suggest experiments to determine wheth-
er there is a correspondence between the temperature and
deposition-rate dependence of the critical thickness for in-
stability, as given by our theory, and the critical film
thickness for the formation of islands. Good agreement
might be expected when substrate interactions are not im-
portant.

We have analyzed the morphological stability of a
growing, epitaxially strained dislocation-free solid film.
From the time-dependent linear stability analysis we have
determined the conditions for which the instability will
occur. We find that (1) the wavelength of the instability
is long compared to the film thickness, (2) the instability
is driven by the lattice mismatch, (3) substrate stiffness is
stabilizing, (4) lower temperatures suppress the instabili-
ty, and (5) the growing film has an apparent critical
thickness due to a kinetic stabilization. The instability
that we describe has many features in common with the
island instability and may describe the onset of isiand for-
mation.
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