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Exact results on the time evolution of the density matrix and the Wigner function for an oscillator
with time-dependent frequency are given. Explicit time dependence is given for the case of linear sweep
of the restoring force. Such a sweep is shown to generate states of the oscillator with remarkable non-
classical properties such as squeezing and sub-Poissonian character.
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The generation of nonclassical states [1] of the radia-
tion field and other systems continues to be of great in-
terest. One now knows a very large class of nonlinear op-
tical processes which can produce squeezed light and
some of these schemes have already been demonstrated.
We consider here a linear system with externally controll-
able parameters.

In this Letter we demonstrate how states with nonclas-
sical properties can be generated if the frequency of the
harmonic oscillator is swept as a function of time. We
present exact analytical results for the case of a linear
sweep of the restoring force. We present results not only
for some of the lower-order moments like (%2(1)),
(p*()), and number fluctuations but also give the time
evolution of the density matrix of the system. Such linear
systems also describe the quantum motion of particles in
a Paul trap [2-4]. Thus the general results on the time
evolution of the density matrix and the Wigner function
would also be applicable to particles in Paul traps.

Consider a harmonic oscillator with a time-dependent
frequency [5]. We write the Hamiltonian in the form

H=1%p+ L0221+, (1)
where B(¢) gives the frequency modulation. In our
analytical work we assume that the restoring force on the
oscillator is linearly swept, i.e.,

0, for —= <t <0,

B(t)=1PBot/T, for 0=:=<T,

Bo, for T<t<oo,

(2

Other forms of (¢) are also very important— for exam-
ple, in a Paul trap B(¢) is equal to Bocos(Q1), i.e., it is
periodic. The two limiting cases corresponding to sudden
and adiabatic changes are contained in (2). |

(1/K)sinlk (t —0T)]
coslk (t —wT)]

X(1) coslk(zr —oT)]
P(z) |~ | —ksinlk(z —0T)]
where k2 =1+ f,.

We next show how the density matrix at time ¢ can be
obtained from the initial density matrix. We introduce
the scaled operators X and P and dimensionless time 7

X=vVoi2%, P=JV120p,
3)
X,Pl=i/2, t=wt, h=1.

The Heisenberg equations for X and P can be solved and
the solution can be written in the form

X(0)
P(0)

X(1)
P(1)

uv
uv

, 4)

where the functions U and V satisfy the differential equa-
tion

2
45114+ 5(c)1p=0 (5)
dr
with the initial conditions
U)=1, U0)=0,r0)=0, V(0)=1. 6)

For B(z) given by (2) the general solution of (5) in the
domain 0 < 7 < wT can be expressed in terms of Bessel
functions of order ¥

¢—C|(‘l")I/2J|/3(Z)+C2(T’)'/2Y|/3(Z) , (7)
where
> (s 1/2
. ] — 0 13
= - 8
=1+ By 2=73 8)

Thus the functions U and V can be fixed by using (6) in
(7). Note that for r =0, z=0 and thus both C,,C;, will
be nonzero. The solution of the Heisenberg equations in
the domain 7 > wT will be

X(wT)

P(oT) )’ ©)

Equations (4)-(9) give the exact solution of the Heisenberg equations of motion. We next use these to study the
quantum dynamics of the oscillator. The functions U and ¥ depend on how the frequency is swept. We can also define

the creation and annihilation operators in the usual way,
a=X+iP, at=x-iP, la,a'l=1.

(10)

It is clear from the foregoing that the time dependence of 4 is of the form

a(o)=u()a+o(D)at, |ul®=|v]?=1.
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The parameters u(z) and v(z) can be obtained from (4)
to (9). The Bogoliubov transformation (11) with time-
dependent parameters enables us to obtain the density
matrix at time 7 in terms of the density matrix at time
7=0. Using disentangling theorems for the SU(I,1)
group we have proved that

a(r)=S7'4S, p(z)=Sp0)S ",
(12)

+i(6,—0,) - n
4 cosh 'ulat?*—H.c),

S =exp(i0,4'a)exp(+e
where u =|u|e'a", v =|u|e'0". It should be borne in mind
that 6,, 6,, and |u| are functions of time 7 and that in
general 6,7=0. Note that the standard squeezing operator
[6] corresponds to choosing 6, =0.

Instead of working with the density matrix, we could
also work directly with the Wigner function [7] which is
very useful in the study of quantum-statistical properties.
It is in fact much simpler to write the Wigner function
®(a,a*) at time 7 in terms of the Wigner function at
7=0. Using the transformation (11) one can prove that
[cf. Ref. [7(b)], Eq. (2.22)]

d(a,a*,7)=0(w*a—va*;ua* —v*a;0). 13)

A very large class of states [7] of the harmonic oscillator
corresponds to the Gaussian Wigner function of the form

1 ula—ag)?+u*(a* —ad )2+ 7|a—aol?
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FIG. 1. The variance of the quadrature X as a function of 7
for an oscillator initially in the ground state. The parameters
are chosen as Bo=1 and (curve a) w7 =103, (b) 1, (¢) 3, and
(d) 103, Thus the cases a@ and d correspond, respectively, to
sudden and adiabatic limits.

o

O(a,a*) = exp|—

2y —alu| )7
where
(@ =ay, GH=—2u*+ad, G'@)=y— L +|aol?.

The form (14) includes (a) coherent states u =0, y= 7+,
(b) thermal states u =0, ap=0, y> +, (c) mixtures of
thermal and coherent states, and (d) squeezed states
u=0, ao=0, y2—4|u|>=1%. From the transformation
(13) it is clear that the Wigner function at time 7 will
also be Gaussian with the parameters u, ¥, and ao re-
placed by

ao— u(t)ag+o(zr)ag ,
—2u* — u?(—=2u*)+ 03 (—2p)
+2uvy= — L psinhAe’®, (16)
y— W*u+ov*v)y—2uu*v —2pu*uv*= ¥ ncoshA.
The quadrature e ~*d+e%a " will exhibit squeezing if
nlcoshA —sinhAcos(8, —2x)1 < 1. a7n

If the phase of u is nonzero, then the quadratures X and
P are correlated. The Gaussian character of the Wigner
function can also be used to calculate the width of the
photon number distribution. The variance of the number
distribution or Mandel’s Q parameter can be written in
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r’—4lul?

(15)

terms of u and y as follows:
(A
r*+2laol?y—  —2(ad)2u* —2adu+4|u|?

Q

—1.

r+laol?— 3

(18)

The transition probabilities can be directly obtained
from (12). For example, the probability p,, of finding
the oscillator in the state |n) at time  given that at t =0
it was in the state |m) is

Pum (£) =|(n|S|m)|2. (19)

The matrix element of the operator S can be obtained by
expressing .S in normally ordered form.

It should be borne in mind that all the above results
(10)-(19) hold irrespective of the form of time-de-
pendent function B(z). Explicit results can be obtained
for the case of /inear sweep of the restoring force by using
(4) to (9).

We next present the numerical results for the squeez-
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0.7 5 ing and sub-Poissonian properties of the oscillator system.
. In Fig. 1 we show the squeezing in the component
06 1 X=(@+a"%)/2 when initially the oscillator is in the
] ground state. We observe that the linear sweep produces
] a significant amount of squeezing. The squeezing proper-
05 7 ties are much more pronounced for the case of a sudden
] jump [8]. As expected the adiabatic changes [9] do not
o}/\\ 0.4 produce any noticeable squeezing. From the calculation
> 1 of the phases 6, and 6. we also find that the two quadra-
3 0.3 ] tures X and P are in general correlated for most of the
v ] time. Note that for fast sweeping, the variance exhibits
] periodic behavior. For the parameters of Fig. 1 this
02 B period is found to be x/+/2 which follows from Eq. (5) as
. 1+p— 2. In Fig. 2 we show the squeezing characteris-
0.1 7 d tics if initially the oscillator state is squeezed in the quad-
] c rature P=(4—a")/2i. The quadrature X exhibits quite
: a ® a significant t of hich depend
0.0 T gnificant amount of squeezing which in turn depends
0. 5.0 on the rate of the frequency sweep. For the initial vacu-
TIME, T um state the Wigner function (14) is Gaussian with equal
noise in the two quadratures (u =0, y=%). In Fig. 3 we
FIG. 2. Same as in Fig. | but the oscillator is initially in a show the time evolution of the Wigner function (14). We
squeezed coherent state |a,¢) with a =1, {=0.5¢ ~'*, show the behavior at a time when the system shows the
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FIG. 3. The Wigner function (14) with @ =X+ iP [cf. Eq. (10)] for the system initially in vacuum state for 7 =10 "3, fo=1, and
7 =1.1 which corresponds to the minimum in Fig. 1, curve a. Inset: The contours of constant ®.
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FIG. 4. The Q parameter as a function of 7 for the case of
an oscillator initially in a coherent state |a), a=1. The param-
eter T has been chosen as (curve a) 1073, (b) 1, (¢) 3, and
(d) 103,

o

maximum amount of squeezing in the X quadrature. Fi-
nally in Fig. 4 we show the generation of sub-Poissonian
statistics when initially the state is a coherent state [10].
The time-dependent behavior of the Q parameter is simi-
lar to that shown in Fig. 1. In general this is not expected
except when the mean value of the field is so large [11]
that a linearization around the mean value can be done.
For Fig. 1, the mean value is zero but this is not so for
Fig. 4. The linear sweep of the restoring force can pro-
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duce large amounts of sub-Poissonian statistics [12].
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