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Metamorphosis of a Cantor Spectrum Due to Classical Chaos
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We study how a Cantor spectrum, its level statistics, and corresponding dynamics are affected by the
onset of classical chaos. While the spectrum undergoes visible changes, its level spacing distribution fol-
lows an inverse power law p(s) —s 'I' on small scales. We find a crossover which is manifested in the
time domain by two diffusive regimes characterized by a classical and a quantum-mechanical diffusion
coeScient. In the strong quantum limit we show by means of a transformation that the spectrum is

governed by the integrable Harper equation, even if the classical phase space is strongly chaotic.

PACS numbers: 05.45.+b„03.65.—w, 73.20.Dx

The impact of classical chaos on quantum mechanics is
of interest both from an experimental and a theoretical
point of view [I]. In a search of signatures for classical
chaos the statistics of levels is frequently investigated [2].
The distribution p(s) of nearest-neighbor level spacings
exhibits power laws p(s) —sp (P= I, 2,4) for s 0 as a
consequence of level repulsion. We recently pointed out
another class of level statistics characterized by an in-
verse power law p(s) —s I, which appears to be uni-
versal for systems with unbounded quantum diffusion in

one dimension [3]. We found a realization of this un-
bounded diAusion in a model of Bloch electrons in a mag-
netic field as described by Harper's equation [4-7]. The
classical limit of this model, however, is an integrable sys-
tem and shows no chaotic behavior, whereas the real clas-
sical analog of crystal electrons in a magnetic field (e.g. ,
in lateral surface superlattices) should have diffusive
chaotic dynamics [8]. As Hofstadter's butterlly spectrum
[6] stems from a classically integrable model (Harper' s

equation) and as the long-standing goal of its experimen-
tal observation is now approached with lateral surface su-

perlattices [9], it is of considerable experimental interest
to know if such spectra are changed significantly by the
existence of classical chaos.

While the influence of classical chaos on discrete spec-
tra and their level statistics was studied intensely in the
past, we now investigate how a Cantor spectrum, i.e., an
uncountable spectrum, is affected. To this end we assume
the kicked Harper model as a simple classically chaotic

modification of Harper's equation [10]. We find that the
asymptotic power law p(s) —s I still accounts for the
classically chaotic case. A mere inspection of the spec-
trum, on the other hand, reveals considerable changes.
The discrepancy is explained by a crossover on a scale s
and on a corresponding time scale t* depending on A.
On small energy scales s (s* the spectral statistics
shows hierarchical level clustering p(s) —s unaffect-
ed by classical chaos. The level clustering is destroyed
only on scales s & s*. In the time domain there is a cor-
responding crossover from a mimicking of the chaotic
classical diAusion below t* to a purely quantum mechan-
ical diA'usion above t*. In the strong quantum limit
(I1 ~) we show that the system can be transformed to
the integrable Harper system. Thereby we explain why
the spectrum has the statistics of the integrable Harper
system, even if the classical phase space is strongly chaot-
1c.

The unperturbed Harper's equation [4-7] is a station-
ary Schrodinger equation Hy=Ey, which can formally
be expressed in terms of a Hamiltonian

H =2cos(p)+icos(x) .

Here A, =2 and p = —i h t)/tix plays the role of a momen-
tum operator with an eAective 6 =2zo.. The parameter o.

is proportional to the magnetic field and gives the number
of flux quanta per unit-cell area. Note that the classical
limit of the Hamiltonian Eq. (I) is integrable. We want
to study the above questions in the kicked Harper model
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[11,12] sition and momentum. The spectrum was studied for ra-
tional values [15] of o =r/q. Here the system is periodic
in x and p and another Bloch phase I9~ is introduced.
This reduces the time-evolution operator in Eq. (4) to a
qxq matrix [16]. A Fourier transform of the time evolu-
tion of a wave packet yields those quasienergies
e [ —x, rr] which belong to eigenstates excited by the

wave packet. To obtain all q quasienergies it turns out to
be most eAicient to start with a random initial wave pack-
et. The quasienergies co depend on the two phases 0~ and
0 and form energy bands, as long as a is rational.

We first study how Hofstadter's butterfly is aAected by
classical chaos, i.e., the spectrum (of quasienergies in our
case) as a function of o. In Fig. 2 these bands are plotted
as functions of o for four different values of K/h. As can
be seen from Eq. (4), for K/h =const, the spectrum is
symmetric with respect to cr= —, . For Ir/h =1 (top) the
spectrum looks like the original Hofstadter butterfly.
With increasing values of x/h we observe that the large
gaps become smaller and eventually disappear. For small
denominators q of o the q single bands broaden until they
touch each other and form one single band from —z to z.
For o. s close to irrational numbers there is a transition
from a hierarchical band clustering to a more uniform
distribution of bands all over the interval. Although Fig.
2 exhibits visible changes in the butterfly, the asymptotic
form of the level spacing distribution p(s) —s ~ re-
mains unchanged (see below). We get more insight into
this behavior by studying time-dependent phenomena. In
the integrable Harper model we had found an unbounded
linear (i.e., diffusive) spread of wave packets [3]. Subse-
quently unbounded diAusion was also observed in the
classically chaotic kicked Harper model by Lima and
Shepelyansky [12]. We now investigate how these obser-
vations are related. Figures 3(a) and 3(b) compare the
growth of the variance of a quantum-mechanical wave
packet and a corresponding classical distribution in phase
space for kicking strengths x corresponding to Figs. 1(c)
and 1(d), respectively. The quantum behavior mimics
the classical diAusion for a finite time as is seen in the in-
sets. There is a crossover time t*, after which unbounded
quantum diAusion due to hierarchical level clustering like
in the integrable case dominates. Thus there are a classi-
cal and a quantum-mechanical diA'usive regime with
diAerent diAusion coe%cients and the transition can be
detected. This crossover is to be contrasted to the
diff'usion-localization crossover known from the kicked ro-
tator [17].

For the wave packet of Fig. 3(a) [Ir=3.5, h =2'/
(400+a~)], which was centered initially on the outer-
most torus of the upper right island, the transition occurs
after about 20 time steps. Numerically the crossover
time t* scales roughly as t*—1/h in this situation. Here
the classical diAusion coe%cient is reduced due to the
fact that many classical trajectories are trapped within
the island and do not contribute to diAusion. More typi-
cally, however, we find the classical diff'usion coe%cient

H =L cos(gi) +Kcos(x)8i (r ), (2)

where 8~(t) is a periodic delta function of period one.
The corresponding classical equation of motion is an
iterated map from one kick to the next

p' p+Ksin(x), x'=x Ls—in(p') . (3)

In Fig. 1 we show typical Poincare surfaces of section for
four diA'erent values of K=L:—v. For v 0 the un-
kicked Harper system is recovered. As soon as rc&0 a
small stochastic layer exists, which widens up with in-
creasing kicking strength and allows for diA'usive motion
in p and x. In an intermediate regime there is a mixed
phase space with regions of regular and stochastic mo-
tion. For K =5 no islands are visible and the dynamics is
strongly chaotic.

The quantum dynamics of Eq. (2) is described by the
time-dependent Schrodinger equation. As the kicks are
periodic in time, the Floquet theorem applies and one can
use quasienergy eigenstates W„(x,t) [13]. The system is
also periodic in x, which requires the Bloch theorem to
hold, i.e., 4'„(x,r) =e' "y (x,t) where 0, is the quasi-
momentum in the x direction and y (x+2rr, t) =y„(x,
t ). The periodicity of y„(x,r ) now implies that the
operator p has eigenvalues of the form h(n+8, ) with in-
teger n,. The time evolution operator acting on periodic
functions in x for one period of time is then given by

U =exp[ —I'(L/h)cos[h(n+0, ) l]exp[ —I'(K/h)cos(x)]

(4)

and determines the quasienergies m by Uy„(x, t)
=e'"tIr„(x,t). The degree of classical stochasticity and

quantum eAects can be varied independently by varying
K, L, and 6, respectively.

We have investigated the integrated level spacing dis-
tribution and the time evolution of the variance

var(t) =h (n (r)) =h gn ~p„(t) ~
(5)

F'IG. 1. Classical phase space of one unit cell for x'=0.01,
2.0, 3.5, and 5.0 (left to right).

of a wave packet p(r) for different values of K and
6 =2zcr in the kicked Harper model. For the time evolu-
tion of a wave packet the operator U was iterated using
the fast-Fourier-transform method [14] with up to 10
momentum eigenstates. We have analyzed the variance
for initial Gaussian wave packets with equal width in po-
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to exceed the quantum-mechanical one. An example is
shown in Fig. 3(b) [a.=5.0, 6 =2'/(10+os)] where the
wave packet moves in a classically fully chaotic phase
space. In this case the crossover time numerically ap-
pears to scale roughly as r —I/O . Thus the fingerprints
of classical chaos in the diAusion behavior of the kicked
Harper model are the short time diAusion and its scaling.
One expects the crossover in the time domain to corre-
spond to a crossover at some scale s* in the spectrum.
For the integrated level spacing distribution (Fig. 4) we
find an inverse power law p;„&(s)—s '/ for small spac-
ings s (s* [181. On small scales the spectrum thus is
unaAected by classical chaos. The figure clearly shows a
crossover on larger scales where the hierarchical level
clustering is destroyed due to classical chaos. It was not
possible to detect a transition to a Wigner distribution
within a single spectrum. For large x, p(s) becomes a
Wigner distribution.

One concludes from the above results that the asymp-
totic behavior (t ~, s 0) of the kicked system is
determined by the integrable Harper's equation already.
In the strong quantum limit (K/h, L/h 0) we can ex-
plain this by mapping the eigenvalue equation of U to the
integrable Harper's equation. Denoting by y and y+
the eigenfunctions before and after the kick, in analogy to
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FIG. 2. Quasienergy spectrum vs a C [0, 11 for s/6 =I, 3, 6,
and 10 (top to bottom). The quasienergies co range from —

zc to
z ( —2 to 2 in the top figure). In the Hofstadter butterfiy in-

creasing «/!!1 removes the large energy gaps and broadens the
bands. The hierarchical level clustering is removed on large
scales. Note that we keep r/6 constant as cr=2xh is varied.

FIG. 3. (a) Quantum vs classical time evolution (solid and
dash-dotted lines, respectively) of the variance of a wave packet
initially centered on the outermost torus of the upper right is-

land in Fig. 1(c) with!r=3. 5 and h =2'/(400+os). The inset

shows that after a crossover time a second diffusion process sets
in, i.e. , quantum diffusion due to hierarchical level clustering.
(b) Same as (a) for the fully chaotic phase space of Fig. 1(d)
with s =5 and h =2m/(10+ og). Here the quantum diff'usion

coefficient is smaller than the classical.
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FIG. 4. Integrated level-spacing distribution for v =5.0 and

a =233/2474, an approximant of 1/(10+os) [corresponding to
Fig. 3(b)]. There is an inverse power law p;„&(s)—s 't on

small scales and a crossover to a regime influenced by classical
chaos for larger s. The spectrum was determined by a Fourier
transform of the time evolution of a wave packet over 2' time

steps yielding a quasienergy resolution of about 10

Grempe], Prange, and Fishman [14],we define

t71„(x,t) = tlr+(x, t)/[1 —i tan[(K/26)cosx]] . (6)

We use the Floquet theorem and write tlt (x, t )
=e' 'u„(x, t) where u(x, t+1) =u(x, t). For the Fourier
components p„=(2tr) ' j o

e'"' tt( xt)dx we formally
obtain a tight-binding equation

~rv n+r + Tnv n 14 09 n ~

r(&0)

where the hopping terms 8' are the Fourier coeScients
of W(x ) = —tan [(K/26 )cosx] and T„=tan[co/2 —(L/
2A) cos[ trt(n +0, )]j. A first-order expansion in L/6 and

K/6 yields

v „+t+v„ t+, cos[h(n+0, )]v „2L

Kcos co/2

4
K

tan (co/2) p„.

For L/A, K/6 0 the quasienergies co tend to zero and

we identify Eq. (8) with Harper's equation for X=2L/K
and F. =2@co/K. The integrable Harper's equation thus

determines the spectrum of the kicked system even in the

strongly chaotic regime, provided lt is large enough. We
believe that for any value of K, L, and 6 the asymptotic
long-time behavior still resembles the integrable case.
Reference [3] then would imply a quadratic growth of the
variance for K & L, unbounded diAusion for K =L, and

localization for K &L. This would be an alternative ex-

planation for corresponding recent observations by Lima
and Shepelyansky [12,191. We conclude by mentioning
that in the experimental search for Hofstadter's butterAy
in lateral surface superlattices spectral modifications due
to classical chaos similar to Fig. 2 must be expected.
Dynamical properties like diA'usion, however, can in-

directly reveal the hierarchical structure of the energy
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