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Spin-Glass Nature of Tweed Precursors in Martensitic Transformations
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Many displacive solid-solid transformations, despite being first order, show pronounced precursor
effects, such as the mesoscopic, micron-scale, "tweed" pattern seen in shape-memory alloys. We model
this tweed theoretically using a nonlinear, nonlocal elastic free energy, and argue that quenched concen-
tration inhomogeneities drive the local tweed modulations. We report (I) the construction of a model
for {I I j/& I I & shear transformations in square systems, (2) a simulation including concentration inhomo-
geneities, and (3) a mapping of the disordered 2D martensite onto an infinite-range spin model, identify-

ing tweed with the spin-glass phase.

PACS numbers: 81.30.Kf, 61.70.Wp, 75. 10.Nr

In textbook first-order phase transitions critical Auc-

tuations are negligible: Water shows no hint of incipient
solidity above 0 C. First-order solid-solid displacive
transformations are strikingly diAerent; precursors are
common for tens through hundreds of degrees away from
the transitions. We study here the tweed pattern [I] ob-
served in electron micrographs well above the transition
temperature in the so-called medium and weak marten-
sites, including the shape-memory alloys FePd [2] and
NiAI [3], the superconducting A-15's [4], and high-T,
Y-Ba-Cu-Co-O, and Y-Ba-Cu-Al-0 [5,6]. The tweed

appears as a characteristic cross-hatched pattern. X-ray-
and electron-diffraction measurements [2,3,7-10] indi-
cate that tweed is a local mixture of undeformed and de-
formed regions, and that it arises from a local {IIOj/
(110) shear [1,3].

This paper considers the two-dimensional square to
rectangular transition as a simple model for the three-
dimensional cubic to tetragonal transition in metallic sys-
tems. Near the transition, these materials show a marked
softening [11] of the elastic constant C'=(C~~ —Clq)/2
[the resistance to rectangular (deviatoric) shears], and
have large elastic anisotropy [12]; hence C44/C' and

(C~ ~+2C~~)/C' are both large. We thus consider the for-
mal limit where this elastic anisotropy is infinite; i.e., the
only allowed deformations are rotations, translations,
and volume-preserving rectangular stretches (deviatoric
strain). We subsequently relax these constraillts.

Our theoretical model formally supports the proposal
that the existence of some disorder is of central impor-
tance in the tweed precursor [13]. Suggestively, in pure
zirconium and titanium, central-peak precursors do not

appear above the co phase transition, but do appear in

samples alloyed with as little as 1% oxygen or nitrogen
[14]. We are further motivated by the drastic depen-
dence of the martensitic transition temperature on con-
centration. For example, in Fel —„,Pd„, [2], the martensi-
tic transformation temperature changes from 0 to 300 K
as the concentration go varies from 32% to 29%. Within
a local region in any alloy, the local concentration t)(x,y)
will exhibit static, quenched-in, statistical variation about
the nominal concentration go, we consider the proposal
that these inhomogeneities drive the local deformations in

1

U+ (x+y) +
I

U —(x —y), (1)

and consequently p(x,y)=e„„—e,, „, =&+(i)+p —(j); two
orthogonal modulations completely describe the displace-
ment and strain fields.

Superpositions of diagonal modulations of this type are
present in the simulations of Khachaturyan [16]. If the
modulations occurred in only one direction, we could
think of them as a lattice of solitons or twin boundaries:
The period-on theories [17] and the subsequent dressed
embryo theories [IS] of tweed are based on this idea.
The transparent decomposition we introduce above in the
limit of infinite anisotropy gives an aesthetically appeal-
ing explanation for tweed, and allows for further analyti-
cal and numerical progress, below.

Imposing this constraint, we use standard group-
theoretic methods to arrive at the following expression for
the Landau-Ginzburg free energy [9,17,19] for the two-
dimensional square to rectangular transition. To sixth or-
der in p and second order in gradients, the most general
free energy can be rescaled into the form

f(y) = {aT(T—To)+ a, [V(x,y) —no] j(t '

U(x, y). =

—
tlat +tlt + tc((Vy) + tc~(t12t) —r1,', rl)tlt.

the material, forming tweed.
Our order parameter is the component of the strain

tensor corresponding to local rectangular deformation,
p=e, „—e,, , As mentioned above, the materials of in-

terest have substantial softening of C' and consequently
large elastic anisotropy. We begin with the ansatz that
only deformations composed of {Ilj/(11) shears are im-

portant. In this limit (infinite elastic anisotropy) the
strain field has (I) no bulk dilation (e, +e~y =0) and (2)
no diagonal shear (i.e., [10j/(01), hence e„~+e~, =0).

These constraints result in a strain field which is simply
a superposition of one-dimensional modulations along the
(11) directions [15]. Denote the Cartesian displacement
field by U(x,y) =(X(x,y), Y(x,y)) and change the vari-
ables to i =x+y and j=x —y. Applying constraints (I)
and (2), we obtain (X+Y); =(X—Y)J =0 and thus
X+ Y is a function of j only, while 4 —Y is a function of
i only. Thus, most generally,
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Note that the quadratic term a(x,y) embodies the sensi-
tive dependence of the transition temperature on the local
concentration t)(x,y). When tcq and a„are zero this free
energy reduces to the standard triple-well potential for a
first-order transition. There is also a term allowed by
symmetry which couples cl„t) —|),, t) linearly to the order
parameter p; it exemplifies the physics discussed by
Robertson and Wayman [3] and simulated by Clapp
[20], who emphasize how substitutional disorder intro-
duces local atomic displacements which, when they break
the cubic symmetry, can push the system into one of the
tetragonal variants.

We now introduce the central physical assumption that
the transition is driven by static (quenched) concentra-
tion inhomogeneities. Observations of martensitic tweed
[1,2,4] show the patterns to be constant with time and
largely reproducible with temperature cycling. Diffusion
might drive precursors in some systems as suggested by
Khachaturyan [16] and Marais et al. [21], where defects
are known to be highly mobile, but we do not believe this
to be generally the case in martensites. Another con-
sideration is whether the patterns are simply the result of
small, elastic distortions driven by the defect distribution,
as in Robertson and Wayman [3] and Jiang et al. [6];
again there is uncertainty depending on specific cir-
cumstances. The issue is whether the distortions are
smaller than or comparable to the transformation defor-
mation; the evidence [1,2,41 suggests the latter in the
cases we consider.

We now have all the necessary ingredients. The local
first-order transformation temperature TM(x, y) depends
linearly on the local concentration t)(x,y) according to
TM (x,y) = TM (t)o) —(a„laT) [t)(x,y) —t)ol. Therefore,
the local transformation temperature will lie above the
experimental laboratory temperature T in some regions of
the sample, and in other regions, below. For example, if
a„ is positive, as in FePd [2], the system will try to form
local martensitic regions where the palladium concentra-
tion is low and will remain cubic where it is high.

%'e use standard Monte Carlo techniques to investigate
the resulting modulation of the order parameter p(x, y)
as the simulated system attempts to accommodate the
disorder by locally fluctuating between the high- and
low-temperature phases. At each point (x,y) of an N &N
lattice the order parameter is a superposition of contribu-
tions from each one-dimensional diagonal modulation, so
p(x, y) =&+(i)+p —(j). Concentration inhomogeneity is
introduced by giving a(x,y) a Gaussian distribution with
a temperature-dependent mean, and a width determined
by the strength of the coupling between concentration
and p.

Figure 1 shows a structure obtained after performing
the minimization in the tweed regime. Notice that while
long-range diagonal order is imposed by our constraints,
the fact that the ground state actually does modulate in
both directions is reassuring. We vary the eA'ective tem-
perature by changing the average quadratic term: As we

FIG. 1. Theoretical tweed. Strained two-dimensional lattice,
found by minimizing the elastic free energy for a disordered
martensite. The grey regions are mixed between the two rec-
tangular martensitic variants; the white is square austenite.
The temperature is in the middle of the tweed regime, where
the transition from austenite (square) to martensite (rectangu-
lar) would occur in the absence of disorder. We have chosen
the value of the gradient term rc =0.003 to make the thickness
of the distinct rectangular regions (the correlation length g)
aesthetically pleasing. The constant ~~ =0, and 8j =0.05. On
different quenches with the same disorder we find many qualita-
tively similar metastable states.

cool, we go from a square phase, through a temperature
range of tweed, to a low-temperature twinned martensite
phase. The tweed to martensite transition appears first
order and has substantial hysteresis: The modulation
wavelength in the martensite and the amount of hys-
teresis are nonequilibrium efI'ects and will depend on the
thermal history and the Monte Carlo dynamics. A natu-
ral feature of these two-dimensional tweed solutions is
that p+ modulates between austenite (A) and one of the
martensitic variants (say, +M) while p —modulates be-
tween (A) and the other variant ( —M). Any other pos-
sibility is energetically very improbable.

In the case of K.
i =0, there is no need for gradual phase

boundaries between austenitic and martensitic regions of
the system, and the order parameter can then abruptly
shift from one phase to the other. This feature lends to
the two-dimensional problem a natural description in
terms of spinlike variables; a simpler model is discussed
by Fuchizaki and co-workers [18]. We map [tt+(i)] to a
set of N spins [s(i)j such that s(i ) =1 or —

1 corresponds
to p+(i) =M or A. Similarly, we map tp-(j)J to a set of
N spins [o(j)] such that a(j) =1 or —

1 corresponds to
p-(j) =A or —M. If s(i =x+y) and o(j=x —y) are
parallel, the site (x,y) is martensite, P(x,y) =+ M; if
antiparallel, the site is austenite, tt(x,y) =0. Thus the
concentration t)(x,y) maps onto a random bond J;i.
Similarly, the (c)„t)—c),, t))tt term in Eq. (2) contributes
to a random field h; on s(i) and fj on cr(j) An applie. d
stress will also add terms linear in s(i ) and cr(j).

In the infinite anisotropy limit, with zero gradient ener-

gy (tran =0), the martensitic free energy of a two-di-
mensional [22] lattice is the random-field version [23] of
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P = g g J;,s;o, + g h;s;+ g f cr, .
i=1 j=l

(3)

The interactions [J;~1 are independent random variables
with a Gaussian probability distribution of mean Jo and
width J. Motivated by simplicity, we concentrate on the
random-bond model, by taking the coupling with the dis-
order through the coefficient a(x,y) only, and assuming
K~ =0, whence the random fields h; =f~ =0.

Note that Jo(T) effectively corresponds to the free-
energy diAerence between the martensite and austenite
phases at the nominal alloy concentration go, and J corre-
sponds to the change in Jo with concentration at a given
temperature. Thus, at high temperatures, Jo(T) & J and
the system will have a square, antiferromagnetic, austeni-
tic ground state, and at low temperatures, —Jo(T) & J
and the system will have a rectangular, ferromagnetic,
martensitic ground state. In between,

~
Jo(T)

~

~ J, the
disorder leads to a random, spin-glass tweed phase. The
phase diagram [241 Is shown ln Flg. 2.

We can estimate the expected range of tweed for FePd
by using the concentration dependence of the transition
temperature and the random variations in the local con-
centration. Ignoring chemical clustering eA'ects, the inho-

mogeneity due to statistical variations in the local concen-
tration is hr) —[go(I —r)o)/n]'~, where n is the number
of particles in a strain-correlated region. Typically, n is a
few hundred particles [8,26], say, n —400. We use the
experimental value [27] t)TM/t)r)o ——10 K for FePd
(300 K for a 3% shift in concentration). Thus, the local
transition-temperature fluctuations, and thus the predict-
ed tweed regime, would extend in Fe-30% Pd for —450
K. Experimentally, tweed contrast in Fe-30% Pd is ob-
served over a range of nearly 100 K above the martensite
start temperature [28]. Many efl'ects (like the gradient

~ gOggo' ~~giO
~ gg ~

o+ ~ ~ ~ 5

~ ~ ~""" (Tweed) te)

70/g
FIG. 2. The phase diagram expected (see Ref. [30]) for the

antiferromagnetic spin glass, Eq. (3). A given sample at a fixed
nominal concentration go will trace a sloped path as tempera-
ture is decreased (dashed line). The paramagnetic phase, which
would have tweed modulations driven by thermal fluctuations, is
presumably preempted by another phase (e.g. , the melt). The
two magnetized spin-glass phases [ferromagnetic (FMSG) and
antiferromagnetic (AFMSG)I will be discussed in a later publi-
cation.
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the antiferromagnetic [24] Sherrington-Kirkpatrick mod-
el [25],

N lV

term x~) ignored in our phase diagram can suppress the
tweed modulations. It is clear, though, that concentra-
tion inhomogeneity provides plenty of driving force for
tweed.

The constraints of no bulk dilation or diagonal shear
have provided a clear, intuitive explanation for the tweed

morphology. What happens as we relax these con-
straints? The infinite-range strain-strain correlations will

now decay over a distance L along the (11) directions,
and over a distance g along the (10) directions, where g is

the thickness of a correlated rectangular region within the
tweed structure. We can estimate L and g by balancing
the dominant energies in the problem.

The first of the important energy scales is the energy
gained by the coupling to the nonuniform concentration
field r)(x,y). There is one degree of freedom in each
correlated region of area —Lg. In this area, the statisti-
cal variation in the concentration will scale as the inverse
square root of particle number: Arl =a[r)o(1 —go)/L(] '

where a is the lattice constant. Since the concentration
field couples with a strength a„, the energy density gained
from the coupling to concentration is F.„-„„,-

——a„boa [r)o(1 —r)o)/L(] ', where po is the martensitic
strain.

The second important energy scale is the bulk dilation
and diagonal shear energy needed to accommodate the
violation of the elastic constraints. We find that the
bulk dilation and diagonal shear energy B(e„,+e, , )
+D(e„,, ) needed to weave our domains together scales
as E„,-„„,.—(B+D)go(g/L) . Balancing these two ener-
gies leads to the tweed domain-size estimate [29]
L —(' /(ea) '. Here a=a„[r)o(I —r)o)] ' /(B+D) is a
small parameter [27] reflecting the relative strength of
the concentration inhomogeneity and the bulk modulus,
which gives us L&)(. The final important energy scale is
the gradient energy which resists order-parameter varia-
tions: Es...d;„„t=x~(po/()'-. Introducing this energy into
the discussion determines g —[x~/(B+D)] (ea)

What experimental consequences are suggested by this
analogy to spin glasses? In magnetic spin glasses, the two
most distinctive behaviors are the nonlinear magnetic sus-
ceptibility and the "glassy dynamics. " Here the equiv-
alent would be anomalies in the nonlinear elastic con-
stants, as the tweed range is entered, and path depen-
dence (hysteresis) leading to the possibility of diflerent
mesostructures arising from cooling in an applied stress
then removing it, versus simply cooling without stress.
We are not yet in a position to make any detailed predic-
tions.

We believe, however, that the limiting model developed
here, infinite elastic anisotropy, with discretization of dis-
placement fields in a pseudospin representation, driven by
concentration inhomogeneities (intrinsic to alloys), con-
tains the essential general physics needed to understand
ubiquitous mesoscopic precursor patterns observed over
wide temperature ranges in many martensitic transforma-
tions. Many of the tweed-forming martensites are tech-
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nologically important, and the spin-glass viewpoint may
suggest studies, particularly on the dynamics of martensi-
tic alloys, that will provide new insights.
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