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Sign of the Coupling between T-Violating Ground States in Second-Order Perturbation Theory
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We consider the coupling between two T-violating systems by a non-T-violating interaction. We show

that the configuration in which the signs of the T breaking in the two systems are opposite generally has

lower energy. In the context of those theories of the cuprate superconductors which postulate breaking
of T invariance in the Cu02 planes, a crude estimate of the Coulomb-induced "antiferromagnetic" cou-

pling for reasonable domain sizes indicates that it is an "edge effect but at least competitive with the
"ferromagnetic" one due to 3osephson and magnetic eAects.

PACS numbers: 74.65.+n, 05.30.—d, 67.90.+z

There is current interest in time-reversal- (T-) violat-
ing systems, mostly due to the realization that the charge
carriers in the CuO planes of the high-T, superconduc-
tors may be fractional statistics quasiparticles [1,2]
(anyons [3]). Other T-violating possibilities in this con-
text are the so-called "flux phases" [4], or 'He "ABM"-
type phases [5]. Theoretical treatments of this problem
concentrate mainly on a single plane, whereas in predict-
ing observable quantities in the bulk system it is impor-
tant to have a picture of the ordering of the signs of the
(spontaneous) symmetry breaking in different planes.
We will call "ferromagnetic" (FM) the configuration in

which T is broken with the same sign in different layers,
and "antiferromagnetic" (AFM) that in which the sign
of T alternates between adjacent layers. Recent numeri-
cal studies of finite clusters [6] show that if a Coulomb-
type interaction is included between layers, the AFM
configuration is favored, and this picture seems to be con-
sistent with experiments in reflection of polarized light
[7,g].

With this motivation we consider the general situation
of two distinguishable systems, each of them breaking T,
and coupled via a T-even interaction. We show that up
to second-order perturbation theory, the AFM configura-
tion has lower energy in most physically interesting cases.
We briefly discuss the applicability of our result in the
high-T, context.

Consider two subsystems 1 and 2 with identical T-
conserving Hamiltonians, and assume that in the absence
of coupling T invariance is spontaneously broken; i.e., for
each subsystem j (j=1,2) there exists a pair of ground
states IO&, IO& related by IO&=TIO&. Suppose that the

coupling between the subsystems can be written schemat-
ically in the form

I I P2
V= dr„dr'f(r, r') Q((r) Qq(r'), (I)

where AI(r) is a Hermitian operator which is even under

T [TQJ(r)T =BI(r)], and f(r, r'):f(r', r). —For ex-

ample, for the Coulomb case, Q(r)=p(r), the single-

particle density operator, and f(r, r')—:e /Ir —r'I. Note,
however, that in the general case r is an abstract label
and does not necessarily have the significance of a single-

particle coordinate.
In view of the evenness of Q(r) under T, it is clear that

the first-order term in V cannot split the FM and AFM
states. Clearly this is a consequence of the fact that we

are considering the systems to be disconnected, the parti-
cles in subsystem 1 can be distinguished from those of
system 2, and there are no exchange terms between the
two systems. A familiar case in which the first-order
term in perturbation theory favors a "ferromagnetic"
configuration is Hund's rule in atomic physics (states
with maximum L minimize the Coulomb repulsion).
However, that situation corresponds to indistinguishable
particles and the exchange terms are crucial.

To discuss the second-order term, we note that by a
suitable choice of eigenfunctions (p„(r) we can always

rewrite the perturbation (I) in the form [9]

V=g V„0())0(~)t=g V &(~)t&(2) (2)
n n

where V„ is real and A„I =—fIQ(r)(a„(r)dr.
The general form of the second-order correction is

given by [we suppress for simplicity the index i (=1,2) in
I ~ (i)]

IJ)&&J I I + Io(&&o21&. l j»&J2I &-'Io»
AF. = — V„V„,

n, m JI,J2 Jl J2

(3)

&o(l~. lj)&&j(l~tlo)&&ozl~' Ij2&&j2l~. lo2&
Vn Vm

n mJI J2 ~J I+&J2
(4)

where IO;& and I j;& are, respectively, the (T-violating) ground state and excited states of subsystem i Note that (4) .is
obtained from (3) by interchanging I and 2.
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Let us define

g('" "' (to) =Z&oiln„lj(&&j(ln„, lo(&a(E, ,
—to),

Ji

gp" "'(to) =g&02I n„l jp)&j2I n„, IOp)6(E, , t—o) .
J2

Then (3) is

(s)

~E= —g V„V„,
n~, n

(nin) (, ) (mn) (, &)

dM dcoap CO+ M
(7)

Now, in view of the property Tn(r)T ' =n(r), we have quite generally Tn„T =n„. Hence g2
" (to) can be

written

g2" "'(to) =g&TO2I n„lTj2&*&Tjpl n„, lTOp&*6(E, , to—) (g)
J2

because of the antiunitarity property of the time-reversal operator (if l(tt') = Tl y) and Ip') =TIP), then &y'Ip') =&pl&)*
[lo]).

Now, in the antiferromagnetic arrangement TIO2) is simply IO(), and moreover (because of the T invariance of Ho)
Tl jq) corresponds to a particular Ij(). Thus, in this case we have

g2"'"' *(to'):—g('" "' (co') (AFM case) .

On the other hand, in the ferromagnetic case gq" *(to') is in general different from gI" (to'), corresponding to the
spectral densities of the "time-reversed" operator. Let us call it gT"' (to), and denote g(" (to) simply by g

" (to).
Taking also (4), we find that the difference in energy i(E between the FM and the AFM configurations up to second or-
der in V can be written in the compact form

, f. , ( )tof.*, (to')
&Er.M hEAFM g V„V» dto ' de~p ~p CO+ CO

with

( ) — (n m)( ) (n nr)( )

(io)

Although f„„,is a complex function, the double integral can be proven positive, because

f. , (to)f.*,(to')
dco dM~0 ~0 CO+ CO

aJ p

fO

da, de, dto'f„, (to)f„*, (to')e

2

dtof„„,(to)e '" = Ig, (i 2)

Thus, provided V„ is uniform in sign, the AFM con-
figuration has lower energy. This condition on V„does
not seem so restrictive, and is by the way satisfied in the
Coulomb case.

An interesting special case is that in which the p„(r)
can be chosen to be eigenfunctions of some symmetry
operator which commutes with the subsystem Hamiltoni-
an Hp. For example, in the Coulomb case, we can obvi-
ously choose p„(r) =exp(ik r). Thus, provided that the
symmetry in question is not itself spontaneously broken in

the ground state, there is no coherence between the terms
in (3) [or (4)] corresponding to num In that . case
f„„,( )=to&„„,f„(to) is a real function, and also [see
(l2)] Ig, n I

=~ .» Ign I. We then have

~ELM ~EAFM =
& Z Vn Igni

which is positive irrespective of oscillations in V„, favor-
ing the antiferromagnetic alignment.

However, one could ask when in general is f„( )to&0'?

For a translationally invariant system one can label the
states with some wave vector k, and fk(to)AO requires

L that gk(to) eg-k(to). If despite the breaking of T,
reliection invariance in the plane [the operation that
brings (x,y) to ( —x, —y)] is still a good symmetry, then
gq(to) =g —t, (to). This happens, for example, for free par-
ticles in an external magnetic field (and also for the
anyon case), in a geometry with no boundaries (periodic
boundary conditions), and for densities such that an in-

teger number of Landau levels is filled. In this case both
the ground state and excited states can be labeled by k,
and since P is conserved gk(co) =g (, (co). An analogous
situation occurs for a T-violating BCS state [5]. The sit-
uation changes if one considers the boundaries, for in this
case the perfect translational invariance is lost. For a
two-dimensional layer there exists current-carrying states
which are localized within approximately a cyclotron ra-
dius of the sample boundary [11]. For a given edge, it
can be shown [12] that the dynamics of these states is ap-
proximately that of one-dimensional fermions which are
only allowed to move in one direction. The dispersion law
is linear in A: and the direction of movement is determined
by the sign of the magnetic field. The coupling between
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two planes can then be approximated by that of two pairs
of one-dimensional systems, one for each edge of the sam-
ple. Because of the fact that the fermions can move in

only one direction, it is easy to see that, if the fermions
propagate in the +k direction, @+I,(ro) AO, whereas

g i, (co) =0, where g is the spectral function of the opera-
tor that measures the charge near the edge of the sample.
This result implies that the AFM configuration is favored
by an amount proportional to the perimeter and not to
the surface of the sample [13].

The asymmetry in the motion of one-dimensional fer-
mions occurs also for a ring geometry that encloses a flux

Let us discuss this case in some detail. In this exam-
ple the T symmetry is broken externally. Our previous
arguments are valid as long as for each state ~i) for flux

@=&, there exists a ~i*) for @=—
p with the same ener-

gy.
We consider the Hamiltonian of a single ring to be

H=g(e cc +u p p ), (i4)

with

(is)

and c a fermion creation operator. The kinetic energies
are (in units of 6 /2mr ) e =(m —p), where P is the
magnetic flux enclosed by the ring in units of the quan-
tum flux. If we define the total angular momentum as

K =+me'c

flux. Let us call (0;)=~O&) the state which becomes the
ground state for flux P. Also, K;—=K& and its energy is
e;(p=0) —2pK& (we forget about the term p N because
it is independent of the configuration).

The spectral function is given by [we use the notation
c, =e, ((t =0)]

g
"' (ro) =g l(jlp„, lO&) I'a(co —c, +e; —2m') (20)

(2i)

Now, the operator p„, has nonzero matrix elements only
between many-body states whose total angular momenta
differ in m (this follows from the commutation relation
[K,p„,] = —mp„, ). This implies that the states (j~ and
(j'( in (20) and (21) correspond to manifolds that for
zero flux have different momentum (K& ~ m) in modulus
and sign. In general these manifolds are different, and so
are their energies. This implies that in general g™(co)
~gT"' (co), and the AFM configuration of external fluxes
has lower energy, unless some coincidence occurs that
makes f„(co)=0 for all n But t. his seems rather patho-
logical. A hint is given by the noninteracting case, where
f, (co) can be computed easily. In this situation, there are
no level crossings for p & &0. So if, for example, we take
N odd, ~O&)=—(O&=0) has total angular momentum equal
to zero, and the states (j~ and (j'~ are degenerate for zero
flux. We than have

and the total particle number as

N =gcm~c„, ,

we can write the Hamiltonian of a single ring in the pres-
ence of a field in terms of the Hamiltonian for &=0 as
follows:

H(y) =H(/=0) —2/K+/ N.

Because of the translational invariance of the potential,
the eigenstates for &=0 can also be taken as eigenstates
of K, and therefore the eigenvalues for &AO are given by
(the total particle number is obviously a good quantum
number)

where the subindex i refers to a many-body state of total
angular momentum K; and particle number Ã. Note
that, as in the noninteracting case, the corresponding
wave function

~ y;) is the same for both p =0 and /&0.
We now want to compute the spectral functions of p

gt i(co), and gT i(ro). We first note that although the
eigenstates and eigenvalues for finite flux can be obtained
directly from the values for zero flux, there are quite gen-
erally level crossings as the Aux evolves, and the ordering
of the levels is not necessarily the same for zero or finite
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with go"' (co) being the spectral function of the p =0 case,
given by

with co+ =2mpm + m, m~ being the Fermi angular
momentum, and e(co) is the Heaviside step function.
We see from this example that, in this order of perturba-
tion, the energy difference between DE~M and h, EA~M re-
sults essentially from the different energies of the virtual
states (this can be clearly seen in the case of a delta func-
tion interaction where the matrix elements are constants
and equal for both configurations). These intermediate
states constitute the same set for both configurations, a
fact that should be contrasted with exchange mecha-
nisms, where two configurations differ in energy because
of the difference in availability of intermediate states. A
simple example is the strong interaction limit of the Hub-
bard model, where virtual transitions to states with two
(antiparallel-spin) electrons in a single atomic site lower
the energy of configurations with antiparallel spins in

nearest-neighbor atoms. These intermediate states are
not available if the spins are parallel, and therefore the
ferromagnetic configuration is not corrected in second or-
der. As a result of this "intermediate-state exclusion" the
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antiferromagnetic configuration is favored. Our mecha-
nism is of diAerent origin since we are considering two
distinguishable nonoverlapping systems and therefore
there is no exchange.

In summary, we showed that whenever exchange be-
tween two T-violating subsystems could be neglected,
second-order perturbation theory in a Coulomb-type in-
teraction implies that the antiferromagnetic configuration
is favored. We also discussed the examples of two rings
enclosing Auxes that can be either parallel or antiparallel.
When translated to the anyon theory of high-T, super-
conductivity, our results imply that the antiferromagnetic
ordering of chirality among the planes is favored, the bias
being not extensive but proportional to the perimeter of
the (two-dimensional) sample. There are, however, other
mechanisms that could favor the FM arrangement, like
the "classical" magnetic energy, or the Josephson cou-
pling between planes. To get an order of magnitude esti-
mate, we assume that the "asymmetry" in g is of order 1

(gk —g-t, —gk) corrected by an "edge effect factor" d/R,
where d is the interparticle distance and R is a typical
domain size perimeter. Using the fact that the main
weight of gt, (to) is the plasmon pole, and that d is of or-
der of the interplane distance D, we get (sE/particle—(D/R)top, with top the three-dimensional plasma fre-
quency. Typical twin domain widths are [14] R —5000
A. If we identify the "domains" corresponding to
coherent T violations with the twin domains then we esti-
mate AE/particle —10 eV. An estimate of the Joseph-
son-induced bias is the Josephson energy /r. Es„=(l(pj /2tr,
with J, the c-axis critical current. This is arguably a
competing interaction favoring the ferromagnetic"
alignment [151. If we take [16] J„—250 A/cm, we get
AEs, jparticle —10 eV. The unpaired magnetic energy
is also proportional to the perimeter of the sample. An
estimate of this interaction relative to the Coulomb eAect
gives ~AE,. s„/AE~ —10 log(R/D), which again for the
domain sizes mentioned above is a small quantity.
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