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Variational Wave Functions and Ground-State Properties in the One-Dimensional p-J Mode]
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Ground-state properties of the one-dimensional t-J model are studied by using exact diagonalization
of small systems and compared with those found with Gutzwiller-Jastrow-type variational functions.
Near the supersymmetric case (J/t =2), the Gutzwiller wave function is an extremely good trial func-
tion for all electron densities. It reproduces momentum distribution and correlation functions of the ex-
act ground state except for critical behaviors. For J/t & 2 () 2), the ground-state properties are well
described by 3astrow functions with repulsive (attractive) intersite correlations.
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Variational theory is one of the most powerful methods
for understanding strongly correlated electron systems.
The Gutzwiller wave function (GWF) [1] has been exten-
sively used in the Hubbard model and t-J model; howev-

er, it is always diScult to see to what extent it reproduces
the true ground state. Therefore comparison to the exact
results obtained in one-dimensional (1D) systems is par-
ticularly important. It also gives us an overview of the
problem from a different angle and can yield important
insights to higher-dimensional systems. In this paper we

study ground-state properties in the 1D t-J model ob-
tained in the exact diagonalization and analyze them in

the light of GWF. The t-J model itself is also an impor-
tant model for its close relationship to the high-tem-
perature superconductivity [2,3].

In the subspace with no double occupancy the 1D t -J
model is defined as

H = t~(cj&j + [ ~+ cj + ] &j~)
JG'

+Jg(Sj' Sj+ )
—

4 n, n, + () .
J

Henceforth we take t =1. This Hamiltonian was origi-
nally introduced as an effective Hamiltonian of the Hub-
bard model in the strong-coupling regime [2,4]; so far
most variational studies were directed to the small-J re-
gion (equivalently large-U Hubbard model). The numer-
ical [4,5] and analytical [6] studies showed that the GWF
is unsatisfactory in describing the properties in the less-
than-half-filled case, although it is excellent for the
Heisenberg chain where there is no density fluctuation.
Some of the unsatisfactory features were remedied by
modifying the GWF [7,8]. On the other hand, quite re-
cently Tomonaga-Luttinger liquid behavior [9] (small-J
region) and a phase separation (large-J region) have been
studied without using variational functions. The critical
exponents of the long-range behaviors of correlation func-
tions were calculated exactly for the supersymmetric case
[10,11] (J=2) and numerically for the other cases [12].
However, the global features of physical quantities such
as the momentum distribution function n(k) and the spin
(charge) correlation function S(k) [N(k)] have not been
studied. The relationship to the variational functions is

quite interesting. We will show that the GWF is an ex-
tremely good variational wave function for the supersym-
metric case. Furthermore, the Gutzwiller-3astrow-type
wave functions successfully describe the behavior of the
1D t-J model in the whole phase diagram including phase
separation [12,13].

Figure 1 shows n(k) and S(k) obtained in the small-
cluster diagonalization for various values of J in the
quarter-filled case (n=0.5). Singularities appear at kF
in n(k) and 2kt; in S(k). Their dependence on J is con-
sistent with the behavior of the exponent K~ which in-
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FIG. ). (a) The momentum distribution function and (b) the
spin-correlation tunction for the quarter-filled case at J =0.5,
l.o, 2.0, and 3.0 obtained in the exact diagonalization of the
systems with 4, 8, l2, and l6 sites. For J=o, we show the re-
sult in the wave function for the U ~ Hubbard model with
52 sites [14].
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creases from —, as J increases [12]. For example, n(k)
has a power-law singularity at kF with an exponent
(K~ —1) /4K~. For small values of J, the correlation
functions resemble the results in the large-U Hubbard
model [14]. As J increases, however, they lose this be-
havior. Near the supersymmetric case (J=2), the sys-
tem behaves similarly to the noninteracting case, where
n(k) has a jump at kF and S(k) and N(k) become flat in

k & 2kF. This corresponds to the fact that the exponent
K~ becomes 1 near J=2 (J—2.3 for n =0.5) [12], and
the leading term of the singularity becomes the same as
in the noninteracting case. It is worthwhile noticing,
however, that the Green's function does not have a pole
even in this case, because the spin and charge velocities
are diA'erent.

Next we estimate the ground-state energy. The ground
state is always singlet and nondegenerate, if we choose
periodic (antiperiodic) boundary conditions for N/2
=odd (even), respectively (N is the electron number)
[12,14]. Under these boundary conditions, the energy
converges smoothly to the thermodynamic limit. For
n =0.5 we calculate the ground-state energies in 4-, 8-,
12-, and 16-site clusters and fit the results by the formula
E/ N, = e + C )/N, +Cz/N, + C3/N, (N, is the number
of sites). Figure 2(a) shows the fitted values of e . In
the region J~ 3.4 the energies cannot be fitted by this
formula, because the system phase separates in this re-
gion. To check the convergence, we calculated another
series of singlet energies by using diA'erent boundary con-
ditions, i.e., antiperiodic ones for N/2 =odd and vice ver-
sa [15]. Fitting of the data by the same formula gives
another estimate of e . (In this case C~ &0, while the
former fitting gives C~ &0.) We find the diAerence of e

between the two estimates is very small (Ae & 10 t)
[16].

Now let us compare the above results with the GWF:
PyAF =+~(1 —n~ln/l)@F, where @F is a simple Fermi
sea. The variational Monte Carlo (VMC) method [4,5]
was used to evaluate expectation values for the systems
with N/2=odd under the periodic boundary conditions.
Sample numbers and sampling intervals are taken so as to
reduce statistical Auctuations enough. In Fig. 2(b), we
compare the total energy of the GWF with that of the
Bethe ansatz (BA) at J=2. It is surprising that two re-
sults almost coincide for any value of n in the scale of this
figure. In fact, for the half-filled or the Heisenberg case
(n =1), the energy of the GWF, E(GWF) = —

& [(3/
tr)Si(tr)+ I] = —1.384235. . . [4,6], is extremely close
to the exact result E(BA) = —2ln2= —1.386294. . . .
For n =0.5, analytic expressions obtained in Ref. [6] give
E = —0.574632. . . and EJ= —0.164230. . .J. At J=2
the total energy becomes E(GWF) = —0.903092. . . ,
which is quite close to the exact one: E(BA)
= —0.903649. . . . The diAerence is only 0.06%, which is
better than the half-filled case. Furthermore, by solving
the two-electron problem, we can show that the ground-
state wave function is given by ~+) =Pdct, =otct, =ol ~0) at
J=2. This means that the GWF is exact in the low-
density limit. In fact, the total energies of the GWF and
BA coincide up to the order of n; E = —2n+tr n /
12+0(n ) This .is consistent with the fact that the criti-
cal exponent K~ approaches 1 for n 0. This Fermi-
liquid state is nothing but the GWF.

As shown in Fig. 3, physical quantities in the GWF
also almost coincide with those in the true ground state.
It is remarkable that the ground state of the t-J model
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FIG. 2. (a) Total energy as a function of J/t at n =0.5. Extrapolated values (JV, ~) of the exact diagonalization, the energy of
the fully phase-separated state, and variational energies of the three types of variational functions are compared. (b) Comparison of
the total energy per site in the ID t-J model between the Gutzwiller wave function (solid circles) and Bethe ansatz for / =2 as a
function of electron density. In the VMC calculations systems with 50-100 sites are used.
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ing site with the same amplitude t =J/2 independent of
the neighboring state (hole or down-spin electron). This
fact makes the up-spin part of the wave function similar
to the Fermi sea, in which the up spins move freely
without any correlations to the down spins.

Incidentally, it was proved [l7] that the GWF in the
half-filled case is the exact ground state of a Heisenberg
model with an exchange coupling falling oft as the inverse
square of the distance. The present results suggest that
the 6%'F can be a ground state of a similar supersym-
metric model even for n & 1. Actually, a recent investi-
gation [18] has proved that the GWF is the exact ground
state of a Hamiltonian with Jj =2t;~ ~e;~ for any n.

In the following we study Jastrow-type wave functions
to describe the t-J model away from J=2. We take into
account the spin-independent charge-density correlation:

For the r-J model, the conditions r)(0) =0 and r)(~) = I

have to be satisfied. We use the following functions:

0. 2 0. 4

has an enhancement of n(k) in the vicinity of x, which
was considered before as a pathological behavior of the
GWF [5]. It can be shown that this enhancement origi-
nates from the correlated electron motion, (c; c, (I
—n; ) (I —

n~ ))o. All these results show that the
GWF is an extremely good trial function to describe glo-
bally the 1D t-J model at J=2, although it is not the ex-
act ground state; the GWF is basically a Fermi liquid and
has a discontinuity VI —n at k =kF in n(k), while the
exact solution gives a power-law singularity. (As men-
tioned above, @~=1 at J—2.3. However, we will see
shortly that the Jastrow factor lowers the energy at that
parameter. ) In order to describe these power-law behav-
iors around kF, it seems necessary to introduce low-
energy excited states around the Fermi surface into the
trial wave function. I n this connection Hellberg and
Mele [8] have introduced a holon wave function to obtain
the power-law singularity at J=0.

The J dependence of the variational energy in Fig. 2(a)
shows that the GWF is very good in the vicinity of the su-
persymmetric case. It is possible to speculate this reason.
An up-spin electron, for example, can hop to a neighbor-

k/z
FIG. 3. Comparison of (a) the momentum distribution func-

tion and (b) the spin and charge correlation functions between
the GWF (solid line) and the exact diagonalization (open and
solid circles) at J =2. The analytic expressions have been ob-
tained in Ref. [6]. Here we show the results otVMC'calcula-
tions in 60- and 72-site systems with 5&&10 samples. The
VMC results are in good agreement with the analytic expres-
sion within an error of the order of the linewidth. For the diag-
onalization, the data in A„=4, 8, 12, and 16 sites for n =0.5
and lV„=8 and 16 sites for n =0.75 are shown.

(2/x)arctan(r/g), (a) RJWF,
r)(r) =' I, (b) GWF,

1+a/r", (c) AJWF,
(3)

for r&0, and g, a, and P are positive variational parame-
ters. Form (a), which is referred to as a repulsive Jas-
trow wave function (RJWF), includes intersite repulsive
correlation and thus prefers configurations with electrons
mutually apart. In the limit ( 0, it is reduced to the
GWF (b). An attractive Jastrow wave function (AJWF)
with the correlation factor (c) favors local configurations
with electrons close to each other. It is reduced to the
GW F when a 0 and it represents a fully phase-
separated state when o ~. Comparing with RJWF
and AJWF, we may regard the GWF as a "free-electron"
state in that there is no amplitude modification from the
noninteracting state except for the exclusion of doubly oc-
cupied sites.

As anticipated [7], the GWF is unstable against the
RJWF for the small-J region; that is, the total energy in

RJWF, E(g) =E, (g)+E~((), has a minimum at finite g.
The critical value Jp at which the GWF becomes stable
can be obtained from the behavior of E(g) near /=0.
We find E, (g) = —0.575 —0.058$ and EJ((') = —0. 164J
+0.029$J for small g at n =0.5. This means that the
GWF (/=0) is unstable for J (2.0. The j dependence
is because the electrons tend to keep apart from each oth-
er as g increases. In this way, we find Jo —2.0~0. 1

f'or
n =0.3, 0.5, and 0.833. . . . In the region J & J~, the
minimum appears at g—1.6 (for J/r =0), 1.2 (0.5), 0.7
(1.0), 0.4 (1.5), and 0 (2.0) for n =0.5. The repulsive in-
teraction represented by the magnitude of j becomes
~eaker with increasing J. The energies are considerably
improved on the GWF, which are shown in Fig. 2(a).
Correlation functions S(k), 1V(k), and n(k) of the opti-
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mized RJWF agree fairly well with the diagonalization
results. Note that the RJWF still represents the metallic
state and has a jump of n(k) at kF. In the AJWF, FJ be-
comes lower and E, becomes higher as a increases, be-
cause the amplitude of configurations with electrons lo-
cated next to one another increases. By studying the
small-a behavior, we obtain the critica1 value J~ —2.0
(n =0.5) at which GWF becomes unstable against the
AJWF. Searching the energy minimum in the a-P plane,
we obtain the optimized energy in J) 2 [Fig. 2(a)]. The
minimum occurs at a & 10 for J ~ 3.2 and e& 10 for
J) 3.4. In the latter case, E, goes to 0 and EJ becomes
the energy of the spin system for P =0.625 —1, which is

nothing but a sign of the phase separation. Detailed
analysis shows that the critical value J,. =3.3, which is in

good accordance with the diagonalization result [121.
This phase separation in AJ%'F is also confirmed through
the charge correlation function (n;ni) in real space. It ap-
proaches the value of the fully phase-separated state,
(n;ni) =n —ii —j i/N, for a ) 10. The spin-correlation
function becomes considerably similar to the Heisenberg
chain in this region.

To summarize, the ground state of the 1D t-J model
changes its characteristics from RJWF to GWF and
finally to AJ%'F. For J &2, E, is dominant and there is
repulsive correlation between electrons; for J) 2, the sit-
uation is reversed. This behavior is consistent with the
appearance of a region with dominant superconducting
correlation (K„)1) which was found in the exact diago-
nalization. Near J=2, the two are well balanced, and a
kind of "noninteracting" state well represented by the
GWF is realized. Although the present wave functions
do not give correct exponents, the ground-state properties
are reproduced fairly well. In the 2D t-J model, we can
also show that the ground state of two electrons is given

by the "GWF" at the supersymmetric case, as in the 1D
case. This strongly suggests that the GWF can be a good
trial function near J=2 in 2D as well, which requires
more investigation.
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