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Random percolative disorder has been introduced into 300%300 arrays of Nb-Au-Nb proximity-
coupled junctions. Our measurements of dc transport properties show that large amounts of random dis-
order, although depressing 7. and broadening the resistive transition, do not alter the scale invariance of
the phase transition. These results are described by a model which rescales the Josephson lattice by the
percolation correlation length. The relevance of the observations to granular thin films is discussed.

PACS numbers: 74.40.+k, 74.50.+r, 74.70.Mq, 74.75.+t

In this Letter, we explore the relationship between per-
colative disorder and the two-dimensional (2D) phase
transition in proximity-coupled superconducting arrays.
Such arrays are known to provide a near-ideal implemen-
tation of the X-Y model. Our findings—that large
amounts of geometric disorder depress 7. and broaden
the resistive transition, and yet do not otherwise modify
the essential features of the phase transition—represent
the first experimental confirmation of the persistence of
the phase transition in a strongly disordered 2D X-Y
model. Further, our results provide useful insight into the
mechanism by which superconductivity is suppressed in
high sheet resistance granular films. Our results illus-
trate the role that percolation can play in such films near
the localization threshold, and show that the deterioration
of the phase transition in this regime can be explained by
rescaling the Kosterlitz-Thouless (KT) equations by a
characteristic percolation correlation length. Other re-
cent work has examined the role of disorder in the pla-
quette area of proximity-coupled arrays [1], and the
superconducting-normal phase boundary T.(H) in bond-
diluted wire networks [2], and did not consider the KT
transition.

Our measurements were performed on a series of disor-
dered proximity-coupled arrays consisting of Nb crosses
arranged on a 300x300 square lattice decorating a Au
film; percolative disorder was introduced by randomly re-
moving crosses from the lattice. Several series of samples
were fabricated, each consisting of arrays with 100%,
90%, 80%, 70%, and 60% of the Nb sites filled. For all
samples, the cross arms were 1.2 um wide, with a gap be-
tween adjacent sites of 0.4 um. The lattice constant ag
was 10 um (see Fig. 1, inset). The same random number
seed was used to generate samples within a given series,
so that, for example, the 70% sample incorporated the
same topography as the 60% sample, except that an addi-
tional 10% of the sites were filled. The critical percola-
tion fraction p, was empirically determined for each ran-
dom number seed as that fraction of filled sites below
which no connected path of junctions spanned the current
electrodes of the sample. For the series of samples dis-
cussed here, p.=0.5847, in close agreement with the
theoretical value of 0.593 for an infinite 2D square resis-
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tor network [3].

dc transport measurements were taken by applying a
square-wave excitation current (f =23 Hz) and synchro-
nously detecting the voltage with a transformer coupled
lock-in amplifier. Digital signal averaging yielded a noise
floor below 0.3 nV; the temperature was controlled to
%+ 0.5 mK and the ambient magnetic field was < 3 mQe.

Figure 1 shows the resistive transition for five arrays
with filled sites spanning 60%-100%. In the figure, the
resistance of each sample is normalized to its value at
T =8.85 K, which was just below the Nb transition tem-
perature. It is evident that the transition of the arrays to
a zero-resistance state broadens appreciably with increas-
ing site disorder, resulting in a value of 7, that decreases
as the percolation threshold is approached from above.

The actual value of T, is model dependent. In analyz-
ing our data, we have defined 7. to be the temperature at
which the exponent of the array current-voltage (/-V)
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FIG. 1. Normalized resistive transition of the 100% (@), 90%
(a), 80% (D), 70% (@), and 60% (O) arrays with a measuring
current of 1 uA. Ry is the resistance at 7=8.85 K. Inset: A
portion of a disordered array.
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FIG. 2. Reduced phase transition temperature (see text) as a
function of sample disorder, p —p.. T.(1) is the average of
three p=1 samples. The two p =0.7 samples were fabricated
using different random number seeds.

characteristics a(7) =3. This choice anticipates our later
finding that the phase transition of the arrays mimics a
KT transition, even in the presence of appreciable site
disorder. With this convention, 7, is suppressed from
7.26 K for the 100% array to 6.20 K for the 70% array.
We could not extract T, for the 60% array because that
specimen did not display power-law behavior.

Figure 2 illustrates the depression of 7, with increasing
disorder for the 70%-100% arrays. Note that 7, is plot-
ted as a reduced temperature T.=kgT,./(h/2¢)i (T.),
after Lobb, Abraham, and Tinkham [4], in order to scale
out the temperature dependence of the Josephson critical
current i.(T) for an individual junction. Although there
is appreciable scatter, the reduced transition temperature
varies as a power law of p—p., with an exponent of
1.56 +0.24. Here, the critical current i.(7) was mea-
sured independently for three 100% samples. For T T,
the critical current was found to follow the de Gennes ex-
pression for a superconductor-normal-metal-supercon-
ductor junction in the dirty limit, i.(T)=i.(0)(1 =T/
T.0)2exp(—aT'"?), where T,q is the BCS transition tem-
perature. This expression was then used for i.(T,) in the
100% arrays as well as for the disordered arrays. We
note that it is not possible to measure i.(T,) directly be-
cause strong thermal fluctuations near 7, mask the indi-
vidual junction behavior.

Several I-V traces of the 70% sample are shown in Fig.
3(a). The qualitative features of these curves are the
same as those of the 80%, 90% and 100% samples: a
linear slope in the low-current limit for curves above T,
an abrupt increase to a cubic slope at T, and progressive-
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Current-voltage characteristics.
lines have slopes of 1 and 3, and unlabeled curves correspond to
T =6.80, 6.60, 6.40, 6.20, and 6.00 K, respectively. (b) 60% ar-
ray: the line has a slope of 1.29, and unlabeled curves corre-
spond to 7'=5.60, 5.20, 4.40, 4.00, 3.60, 3.20, 2.91, 2.59, and
2.30 K, respectively.

FIG. 3. (a) 70% array:

ly higher power laws as the temperature is lowered below
T.. These features are generally associated with the KT
transition and have been previously observed in fully or-
dered proximity-coupled arrays and in a host of 2D films
[5,6]. Our results suggest that this transition also exists
in arrays having a large degree of percolative disorder,
and that the main effect of the disorder is to depress the
vortex unbinding temperature and broaden the resistive
transition.

This finding is reinforced by Fig. 4. Figure 4(a) shows
the temperature dependence of the exponent a(T) of the
I-V characteristics for various degrees of disorder. It is
evident that the 100% specimen shows a step increase
from 1 to 3 that is in close accord with the universal jump
discontinuity expected for a KT transition. A similar
jump is observed for the disordered arrays, although the
discontinuity is not so pronounced. In addition, the linear
growth in a(T) for T < T, is less rapid than for the 100%
sample. This result is a natural consequence of the
broadened transition. It is known that the linear depen-
dence of a(T) below T, extrapolates to T.o [6]. As T, is
depressed farther below T.¢ with increasing disorder, the
slope in a (T) must decrease accordingly to reflect this be-
havior.

Figure 4(b) plots eighty I-V characteristics of the
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FIG. 4. (a) I-V exponent a(T) vs temperature for the 100%
(@), 90% (), 80% (©), and 70% (A) arrays. Inset: The cal-
culated a(T) vs T/T. as a function of /. (after Ref. [4]). (b)
Condensation of I-V curves for the 70%-100% arrays, plotted in
reduced variables z and &p (see text and Ref. [6]) to illustrate
universal scaling (data for each array is shown for twenty
different temperatures).

70%-100% samples in reduced coordinates, in order to il-
lustrate universal 2D scaling. As discussed by Fisher [7],
and Koch et al. [8], one signature of a phase transition is
a universal condensation of the I-V characteristics onto
two branches, each characteristic of one side of the tran-
sition region. In two dimensions, the reduced variables
are z=2, the dynamical exponent associated with the
coherence time [8] &7, and the coherence length [6]
Exp~exp(CFT./|IT—T.| ~'?). For our arrays, z and
C 7T were treated as fitting parameters and were adjusted
to give the best collapse of the data onto a universal
curve. The optimal fit occurred with z=2.0% 0.1 for all
I-V curves for all samples, in agreement with theory. The
value of C* (a nonuniversal constant expected to be of
order 1) for each sample is given in Table I.

The I-V characteristics of the 60% sample are shown in
Fig. 3(b) and do not show KT behavior. For this sample,
power-law behavior was observed only at 7=4.00 K
(shown as a solid line in the figure), with an exponent of
1.29 =0.01. Below that temperature, the curves show a
downward curvature associated with the development of
an array critical current.

All of these results suggest that percolative disorder
can greatly suppress T. and broaden the resistive transi-

3608

TABLE I. Summary of array properties.

Array 100% 90% 80% 70% 60%
p 1.000 0.8997 0.7984 0.6979 0.5890
&p(ao) 1.00 1.47 2.47 5.75 575
Iy 5.70 5.31 4.80 4.50 0
T. (K) 7.26 6.81 6.64 6.20 S
ct 0.17 0.25 0.3 0.4
(G 0.35 0.4 0.4 0.45

tion, without changing the scaling invariance of the 2D
phase transition. This conclusion is valid over nearly the
entire conducting range above p.; very close to p., howev-
er, the phase transition disappears and is replaced by the
formation of a critical current, analogous to that observed
in single Josephson junctions.

We believe the suppression of T, in this system can be
attributed to a disorder-induced reduction in the effective
superfluid density n,(T,p) on the lattice. Ebner and
Stroud [9] have shown analytically that n,(T,p) for a
site-diluted Josephson lattice at 7=0 is proportional to
the effective lattice conductance in the normal state, and
that both vary as a simple power law near the percolation
threshold, i.e., n,(0,p)/n,(0,1)=0c(p)/c(1)~(p—p.)’,
where o is the normal-state lattice conductance, and
t=1.30 in 2D [10]. For a KT transition, n,(7,) is relat-
ed to T, by the universal jump condition [6] n,(T.)/T.
=8kgm/mh>. We propose a generalization of this rela-
tionship to site-disordered lattices having p > p,:

n (T.(p),p)/T.(p) =8kgm/nh?. €))

The plausibility of Eq. (1) is suggested by our observa-
tion, shown in Fig. 4(b), that highly disordered arrays
continue to obey the scaling invariance of the KT transi-
tion. This observation also permits us to conjecture that
the fractional reduction in superfluid density is indepen-
dent of concentration, i.e.,

n (T (p),p)/n,0,p) =n,(T.(1),1)/n,(0,1) . 2)

This assumption, with Eq. (1), leads immediately to the
relation

T.(p)/T.(1)~(p—pI", 3)

whose predicted power-law behavior compares favorably
with the data of Fig. 2 [11].

Equation (3) also suggests a relationship between
T.(p) and the percolation correlation length &,(p) < (p
—p.) 7Y, where v=1% in 2D [12]. Rewriting Eq. (3) in
terms of this parameter, we have T.(p)/T.(1)~ ,,_’/"
=~ &, ', which indicates that the reduction of 7. from its
fully ordered value can be viewed as a direct measure of
percolative disorder in the arrays.

Physically, £,(p) is the average size of the ‘“holes™ in
the infinite cluster, and this observation suggests a mech-
anism for the broadening of the transition that accom-
panies the depression of T.. de Gennes [13] and others
[14] have shown that it is possible to rescale a percolating
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network by &£, to obtain critical exponents and other net-
work properties. In the familiar ‘“‘nodes-links-blobs”
model [13], &, is taken as the average distance between
nodes in the rescaled lattice. Here we propose that per-
colative disorder also rescales the dimensionless length
parameter /g1 =In(r/ao) of the KT transition to become
Ixt=In(r/&,), which reduces to the conventional expres-
sion for p— 1. This suggestion means that the phase
transition is dominated by weakly bound vortex-anti-
vortex excitations whose cores are centered on a disor-
dered superlattice of holes in the infinite cluster. These
excitations are weakly bound and thus dissociate at lower
temperatures than the more strongly bound excitations
centered on the unit cell of the underlying lattice.

An important consequence of this model is that size-
effect broadening of the transition becomes increasingly
important as array disorder increases. In fully ordered
arrays, the broadening is governed by the size parameter
I, =In(w/ag) =5.7, where w =Nay is the width of the ar-
ray. In disordered samples, /,(p) =Inlw/&,(p)] and de-
creases to 4.5 for our 70% array. A comparison of the
data of Fig. 4(a) with the calculations of Kadin, Epstein,
and Goldman [6], shown in the inset, show that the ob-
served broadening of the transition is in reasonable ac-
cord with this model. A sufficiently large amount of dis-
order will, of course, destroy the transition completely on
a finite lattice. This crossover point will be reached when
&, =w, which for our arrays corresponds to p =0.5905;
we believe this explanation accounts for the absence of
KT behavior in our 60% sample. Table I lists the values
of p, &,, and /,, for the different samples. Although the
models belong to different universality classes, we note
that our analysis— which pertains to a disordered X-Y
model— predicts qualitatively similar behavior to that ex-
pected for the disordered 2D Ising model considered by
Harris [15].

We conclude with a comment on the applicability of
our array results to the phase transition in 2D supercon-
ducting films. As first noted by Beasley, Mooij, and Or-
lando (BMO) [16] for granular Al/Al,O3, T, of thin
films is depressed as R, nears the critical value R,
=h/e?=4.1 kQ/O. This depression, which is accompa-
nied by a broadening of the universal jump in a(T), is de-
scribed by the expression T./T.o=~ (1+0.17R,/R.) "',
valid for BCS superconductors in the dirty limit. Our re-
sults suggest that one possible mechanism underlying this
mean-field expression may be percolative disorder.

Specifically, we model an inhomogeneous 2D film as a
random arrangement of Josephson-coupled small grains.
Such a model is reasonable since inhomogeneities from
various materials processing factors are likely to increase
as R, increases towards R, [17]. For simplicity, we as-
sume that the grains are arranged on a site-diluted square
lattice with coupling energy J(T), which near T, for a
superconductor-insulator-superconductor array is given
by 18] J(T)=(23.1kpT.o/27)(1 —T/T.0)R./R, where

R is the intergrain resistance when the junction is in its
normal state. Using Eq. (3), we may write kzT./
J(T.(p))=al(p—p)/ (1 —p]', where a (=0.95 on a
square lattice [11]) is independent of p. Combining these
relations, and using [9] R,/R=[(p —p.)/(1 —p)]1 ™! we
obtain the BMO relation with a slightly different numeri-
cal coefficient T./T.o= (1+0.29R,/R.) ~'. Thus the
depression of T, implied by the BMO relation follows
naturally from a simple percolation model for an inhomo-
geneous thin film.
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FIG. 1. Normalized resistive transition of the 100% (@), 90%
(a), 80% (O), 70% (&), and 60% (O) arrays with a measuring
current of | pA. Ry is the resistance at T=8.85 K. Inset: A
portion of a disordered array.



